
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-07-01

Data Assimilation in the Boussinesq
Approximation for Mantle Convection
Shane Alexander McQuarrie
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
McQuarrie, Shane Alexander, "Data Assimilation in the Boussinesq Approximation for Mantle Convection" (2018). All Theses and
Dissertations. 6951.
https://scholarsarchive.byu.edu/etd/6951

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6951?utm_source=scholarsarchive.byu.edu%2Fetd%2F6951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Data Assimilation in the Boussinesq Approximation for Mantle Convection

Shane Alexander McQuarrie

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jared Whitehead, Chair
Emily Evans
Mark Allen

Department of Mathematics

Brigham Young University

Copyright © 2018 Shane Alexander McQuarrie

All Rights Reserved

www.manaraa.com

abstract

Data Assimilation in the Boussinesq Approximation for Mantle Convection

Shane Alexander McQuarrie
Department of Mathematics, BYU

Master of Science

Many highly developed physical models poorly approximate actual physical systems due
to natural random noise. For example, convection in the earth’s mantle—a fundamental pro-
cess for understanding the geochemical makeup of the earth’s crust and the geologic history
of the earth—exhibits chaotic behavior, so it is difficult to model accurately. In addition,
it is impossible to directly measure temperature and fluid viscosity in the mantle, and any
indirect measurements are not guaranteed to be highly accurate.

Over the last 50 years, mathematicians have developed a rigorous framework for reconcil-
ing noisy observations with reasonable physical models, a technique called data assimilation.
We apply data assimilation to the problem of mantle convection with the infinite-Prandtl
Boussinesq approximation to the Navier-Stokes equations as the model, providing rigorous
conditions that guarantee synchronization between the observational system and the model.
We validate these rigorous results through numerical simulations powered by a flexible new
Python package, Dedalus. This methodology, including the simulation and post-processing
code, may be generalized to many other systems.

The numerical simulations show that the rigorous synchronization conditions are not
sharp; that is, synchronization may occur even when the conditions are not met. These
simulations also cast some light on the true relationships between the system parameters
that are required in order to achieve synchronization. To conclude, we conduct experiments
for two closely related data assimilation problems to further demonstrate the limitations of
the rigorous results and to test the flexibility of data assimilation for mantle-like systems.

Keywords: Data Assimilation, Boussinesq Equations, Mantle Convection, Computational
Fluid Dynamics, Dedalus

www.manaraa.com

Acknowledgments

First of all, I am grateful to Jared Whitehead for his mentoring and friendship, and for in-

troducing me to such a compelling and relevant area of computational mathematics. Thanks

to our collaborators Nathan Glatt-Holtz, Vincent Martinez, and Aseel Farhat, who made a

great deal of this work possible. Thank you to the BYU ACME professors, particularly Tyler

Jarvis, Emily Evans, Jared Whitehead, and Jeffrey Humpherys, for their herculean efforts

to create a thorough and modern undergraduate curriculum in applied and computational

mathematics, and for inviting me to contribute to the development of the program. Thanks

to my previous math teachers David Wright, Annette Bartlett, Anne Crosland, and Jes-

sica Purcell, for being patient and effective with an energetic and distracted young student.

To my tireless music teachers, especially Patricia Henderson, David Blackinton, and David

Fullmer, thank you for teaching me to show up, dig in, and have fun.

I am also grateful to my parents-in-law Glen and Alicia Hilton, who are always interested

to hear about my work, plans, and ideas. Thanks to my own sweet parents R. Scott and

Melissa McQuarrie, for the kindness with which they raised me and for the countless hours

of babysitting they provided while this work was being finished.

Finally, thank you to my lovely wife Laura. I’ll always belong to you.

www.manaraa.com

Contents

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Convection . 1

1.2 The Boussinesq Approximation . 6

1.3 Data Assimilation . 8

1.4 Dedalus . 11

1.5 Outline . 13

2 Infinite Prandtl Assimilation 14

2.1 Functional Setting . 15

2.2 Regularity . 17

2.3 A Priori Estimates . 19

2.4 Main Theorem . 20

3 Numerical Simulations 25

3.1 Dimension Reduction . 25

3.2 Minimal Simulation Code . 27

3.3 Results . 31

4 Other Assimilation Schemes 38

4.1 Finite Prandtl Assimilation . 38

4.2 Hybrid Prandtl Assimilation . 42

iv

www.manaraa.com

5 Conclusion 46

5.1 Summary . 46

5.2 Extensions . 46

A Notation 48

A.1 Vector Products . 49

A.2 Derivatives . 50

A.3 Spaces and Norms . 56

B Analytical Tools 61

B.1 Vector Calculus . 61

B.2 Inequalities . 62

C Simulation Code 63

Bibliography 88

v

www.manaraa.com

List of Tables

1.1 Typical Prandtl numbers for several fluids. 3

2.1 The function spaces used in the rigorous analysis of the data assimilation

problem. 15

3.1 Minimal values of µ that result in synchronization within about 0.005 units

of simulation time for various Ra with N = 32. 35

3.2 Minimal values of N that result in synchronization within about 0.005 units

of simulation time for the Ra and µ in Table 3.1. 36

4.1 Minimal values of Pr that result in synchronization within about 0.01 units

of simulation time for the Ra and µ in Table 3.1, with N = 32. 42

vi

www.manaraa.com

List of Figures

1.1 Typical two-dimensional Rayleigh-Bénard convection in a turbulent state. . . 5

1.2 The solution to a simple BVP, calculated with Dedalus. 12

3.1 Typical “before” and “after” snapshots of a successful numerical experiment. 32

3.2 Synchronization in various norms for a typical numerical experiment with

Pr =∞. 33

3.3 Convergence (or lack thereof) with µ = 1 and various Ra. 34

3.4 Synchronization with Pr =∞, N = 32, and various µ for two different values

of Ra. 34

3.5 Quadratic (but nearly linear) least-squares fit for the data in Table 3.1. . . . 35

3.6 Synchronization for two different values of Ra, with µ as listed in Tables 3.1

and 3.2 and for various values of N . 36

4.1 Synchronization in various norms for Ra ≈ 5.22 × 107, µ = 18, 000, N = 32,

and Pr = 100. 41

4.2 Synchronization with N = 32 and various Pr for two different values of Ra,

with µ as given in Table 4.1. 41

4.3 Hybrid assimilation with Ra ≈ 5.22×107, µ = 18, 000, N = 32, and Pr = 100.

The temperature and velocity differences remain almost constant, with no hint

of convergence. 44

4.4 Lack of synchronization in hybrid assimilation with Ra ≈ 8.89× 106, N = 32,

and Pr = 100, with various µ values. 45

vii

www.manaraa.com

Chapter 1. Introduction

A substantial portion of engineering, physics, chemistry, biology, mathematics, and other

scientific fields is dedicated to the study of fluid dyamics, the science of liquids and gasses in

motion. For example, [11] discusses wind turbine designs for converting air flow into clean

energy; in [18], biologists study intracellular fluid flow to understand cellular reproduction;

and [20] discusses tsunami modeling to better predict and prepare for future disasters. While

some simple fluid phenomena are well understood, there are many settings in which the

exact dynamical behavior of a fluid is extremely complex. Even something as fundamental

and simple as the wind blowing is difficult to accurately model and analyze. Since fluid

dynamics describe many such fundamental processes, it is important to continue studying

these difficult problems in order to make progress on weather models, airplane technology,

materials manufacturing, and many other areas of science and technology.

1.1 Convection

Most fluids expand as they heat up and contract as they cool down. This expansion and

contraction changes the density of the fluid: as a fluid is heated, it becomes less dense, and

vice versa. Natural convection, also called free heat convection, is a form of heat transfer in

which the resulting changes in density cause fluid motion; in other words, the fluid is moved

by internal processes, not by external forces. Convective systems often exhibit unpredictable

behavior and are notoriously difficult to analyze with classical techniques.

On geologic time scales, the mantle’s motion is fluid and exhibits convective behavior.

Convective processes thus play a role in tectonic motion and volcanic activity. In this thesis,

we analyze a classical model for the earth’s mantle as a fluid. To begin, we briefly introduce

some common fluid dynamics notation.

1

www.manaraa.com

1.1.1 Variables. Let Ω ⊂ R3 be a bounded domain and T = [0,∞). In fluid dynamics

the following variables are standard.

u : Ω×T→ R3 is the velocity field, which describes the macroscopic motion of an infinites-

imal unit of fluid. The behavior of u is of principal interest in most fluid dynamics

problems.

T : Ω× T→ R is the absolute temperature of an infinitesimal unit of fluid.

p : Ω×T→ R is the pressure on the fluid, measured in pascals (Pa). Though it is often the

most computationally difficult quantity to work with, it is an important component in

many applications. For our numerical simulations, we will simplify our main equations

in a way that eliminates p.

ρ : Ω× T→ R is the density of the fluid, measured in kg/m3. We will examine the special

case when ρ is constant, in which case the fluid is called incompressible.

ν : Ω× T→ R is the kinematic viscosity, the ratio of the dynamic (shear) viscosity to the

density. This quantity has units m2/s; at 20◦C, water has ν ≈ 1.0023 × 10−6m2/s.

Roughly speaking, the lower ν, the more freely the fluid moves in relation to itself. For

instance, at the same temperature, tar has a greater ν than dish soap.

κ : Ω × T → R is the thermal diffusivity, the ratio of thermal conductivity (how strongly

the fluid conducts heat) to the density. This is the same κ that appears in the heat

equation Tt = κ∆T and also has units m2/s.

α is the coefficient of thermal expansion, which indicates how the volume of a fluid changes

with respect to the temperature at constant pressure.

g is the gravitational constant, g = 9.8 m/s2.

These variables are also used in the two-dimensional setting where Ω is replaced by a

bounded domain Ψ ⊂ R2 (in that case, u : Ψ × T → R2). See, for example, [9] for more

details on these common variables.

2

www.manaraa.com

Fluid Pr
Mercury 0.015
Oxygen 0.63

Air 0.7
Water 7

Glycerol 1000
Earth’s Mantle 1× 1025

Table 1.1: Typical Prandtl numbers for several fluids [7]. The mantle is an extreme outlier,
which justifies the approximation Pr =∞ for modeling mantle convection.

1.1.2 Dimensionless Parameters. The following dimensionless numbers encapsulate

some important properties of a fluid.

The Rayleigh number Ra is the ratio of the buoyancy-driven effects (the convective driving

force) to the viscous and diffusive effects in a fluid. The precise definition depends on

the domain in question (see (1.3)). A higher Ra means heat transfer happens primarily

by convection; a lower Ra indicates that the heat transfer is dominated by conduction.

The Prandtl number Pr is the ratio of momentum diffusivity to thermal diffusivity,

Pr =
ν

κ
. (1.1)

See Table 1.1 for the Prandtl numbers of a few fluids.

These dimensionless numbers are the main parameters of interest for our experiments. See

[3, 15, 24] for more details on these (and other) dimensionless fluid numbers.

1.1.3 Rayleigh-Bénard Convection. In 1916, Lord Rayleigh established a rigorous

framework for analyzing fluid experiments carried out by Henri Bénard [21]. The setting

is simple: place a fluid between parallel surfaces and maintain those surfaces at constant

temperatures. Though this is not that different from boiling water on the stove, the resulting

flow is remarkably difficult to analyze. See [1] for an overview of current challenges in

Rayleigh-Bénard convection.

3

www.manaraa.com

To describe Rayleigh-Bénard convection in three dimensions, we couple a spatial domain

Ω = [0, L]2 × [0, h] having coordinates [x1, x2, x3] with the Dirichlet boundary conditions

T (x1, x2, 0, t) = Tlower, T (x1, x2, h, t) = Tupper,

where δT = Tlower − Tupper > 0. In addition, we impose periodic boundary conditions in the

non-vertical directions x1 and x2:

u(x1 + L, x2, x3, t) = u(x1, x2, x3, t), u(x1, x2 + L, x3, t) = u(x1, x2, x3, t),

T (x1 + L, x2, x3, t) = T (x1, x2, x3, t), T (x1, x2 + L, x3, t) = T (x1, x2, x3, t).

Periodicity is physically relevant for mantle convection, since the mantle is bounded between

two concentric spheres. The directions x1 and x2 correspond roughly to longitude and

latitude, while x3 measures depth. Thus h represents the distance from the core to the

crust, and L serves as a rough measure of the mantle’s circumference. See Figure 1.1.

For the velocity field, we adopt the no-slip conditions for rigid boundaries. That is, we

assume that the fluid motion vanishes at the top and bottom of Ω:

u(x1, x2, 0, t) = u(x1, x2, h, t) = 0.

These conditions are helpful mathematically and experimentally validated for most fluid

boundaries [24, 9]. On the other hand, the more intuitive free-slip conditions state that the

fluid should not pass through the bounding plates, but allow for movement parallel to the

plates:

ux3(x1, x2, 0, t) = ux3(x1, x2, h, t) = 0. (1.2)

While we use the no-slip conditions in our rigorous analysis, we note that our numerical

method can be easily adapted to either set of conditions.

4

www.manaraa.com

Figure 1.1: On the left, an illustration of the earth’s layers. The mantle is the large orange
section just beneath the outer crust. On the right, typical two-dimensional Rayleigh-Bénard
convection in a turbulent state. Here Tlower = 1 and Tupper = 0. Note the periodicity in
the horizontal direction and the small vertical boundary layers. Earth image taken from
http://newscenter.lbl.gov/2011/07/17/kamland-geoneutrinos/.

The model can be further simplified by ignoring the horizontal direction x2. While

unnecessary for our rigorous results, reducing the dimensions of the domain greatly reduces

the cost of numerical simulations (see Section 3.1). Let Ψ = [0, L] × [0, h] with coordinates

[x1, x3]. In this setting we have the boundary conditions

T (x1, 0, t) = Tlower, T (x1, h, t) = Tupper,

u|x3=0 = u|x3=h = 0,

u, T are periodic in x1.

In either setting, we have a domain-specific definition for the Rayleigh number,

Ra =
gα

νκ
(δT)h3. (1.3)

5

http://newscenter.lbl.gov/2011/07/17/kamland-geoneutrinos/

www.manaraa.com

1.2 The Boussinesq Approximation

We now introduce a system of partial differential equations, subject to the boundary con-

ditions discussed in the previous section, that describes Rayleigh-Bénard convection. The

most general partial differential equations for viscous fluid flow are the Navier-Stokes equa-

tions; what follows is an augmentation of Navier-Stokes with a temperature equation, then

simplified based on a few key assumptions.

1.2.1 Incompressibility. The law of conservation of mass leads to the continuity equa-

tion for fluids,

∂tρ+∇ · (ρu) = 0. (1.4)

An incompressible fluid is one that has constant density, i.e. ρ ≡ ρ0 > 0. In this case,

∂tρ = 0 and the continuity equation becomes

∇ · u = 0. (1.5)

In other words, the fluid velocity field is divergence free. The assumption of constant density

is reasonable for certain fluids; for example, water at 20◦C has fairly constant density in

relation to perturbations of temperature and pressure. On the other hand, changes in density

throughout the mantle have a significant impact on mantle movement and the resulting

tectonic behavior [25].

1.2.2 Gravitational Effects. Changes in density drive fluid flow in convection, so the

assumption of incompressibility must be accompanied by an additional term that accounts

for density evolution. The simplest way to account for density is to assume that it only

affects the fluid when coupled with gravity. In other words, gravity is the only force strong

enough to make density changes noticeably important.

6

www.manaraa.com

Conservation of momentum, ignoring the effects of density except when coupled with

gravity, gives rise to the momentum equations

∂tu + (u · ∇)u− ν∆u = − 1

ρ0

∇p+ αge3T. (1.6)

Note that this is a vector equation, since u is a vector field.1 We also have the following

temperature equation, which arises from assuming a constant heat capacity per unit volume:

∂tT + u · ∇T − κ∆T = 0. (1.7)

See [5, 15, 24] for more rigorous derivations of the system up to this point.

1.2.3 Nondimensionalization. The system (1.6)–(1.7) can be non-dimensionalized to

include the dimensionless parameters Ra and Pr. This is a common final step to make the

model as simple as possible.

Set T ′ = (T − Thigh)/δT , shift Ω = [0, L]2 × [0, h] to the box Ω′ = [0, L′]2 × [0, 1], and

scale time by t′ = κt/h2. Then the new variables u′ and T ′ satisfy

1

Pr
[∂t′u

′ + (u′ · ∇′)u′]−∆′u′ = −∇′p′ + Rae3T
′, (1.8)

∇′ · u′ = 0, (1.9)

∂t′T
′ + u′ · ∇′T ′ −∆′T ′ = 0, (1.10)

with boundary conditions

u′|x′3=0 = u|x′3=1 = 0, (1.11)

T ′|x′3=0 = 1, T ′|x′3=1 = 0, (1.12)

u′, T ′ are periodic in x′1 and x′2, (1.13)

1See Appendix A for mathematical notation.

7

www.manaraa.com

and initial conditions T ′(x′, 0) = T ′0(x′) and u′(x′, 0) = u′0(x′). These are the non-dimensional

Boussinesq equations. For convenience, we drop the ′ notation from here on out.

In Chapter 2, we make one last simplification by formally setting Pr = ∞, resulting in

the system

−∆u = −∇p+ Rae3T, (1.14)

∇ · u = 0, (1.15)

∂tT + (u · ∇)T −∆T = 0, (1.16)

with the same auxiliary conditions

u|x3=0 = u|x3=1 = 0,

T |x3=0 = 1, T |x3=1 = 0,

u, T are periodic in x1 and x2,

T (x, 0) = T0(x),

where now the initial velocity u0 is determined by T0 and (1.14). In Chapter 4, we return

to the formulation (1.8)–(1.10) where Pr is large, but finite.

Although there are several additional physical effects relevant to mantle convection that

are omitted from this Rayleigh-Bénard model (e.g., compressibility and/or temperature-

dependent viscosity), it is an appropriate “zeroth order” representation of mantle convection,

and is the usual starting point and test base for mantle convection simulations [4, 22].

1.3 Data Assimilation

The critical question about (1.8)–(1.10) and (1.14)–(1.16), as with all mathematical models,

is this: how well does the system reflect what happens in real life? The answer for these

models (and most models) is “very well, in some aspects, most of the time.” Data assimila-

8

www.manaraa.com

tion is one way to overcome the shortcomings of an imperfect model by incorporating real

world observations into the system. See [19] for a good review of data assimilation in general

from a mathematical perspective.

Consider the model (1.14)–(1.16) with state variables ũ, T̃ , and p̃, but with a slight

modification to the temperature equation:

−∆ũ = −∇p̃+ Rae3T̃ , (1.17)

∇ · ũ = 0, (1.18)

∂tT̃ + (ũ · ∇)T̃ = ∆T̃ − µPN(T̃ − T). (1.19)

We call this the nudging or assimilating system. The final term µPN(T̃ − T) of the tem-

perature equation is a Fourier projection of the difference between the model temperature

T̃ and some real world temperature data given by T . That is, if {φn}∞n=1 is a Fourier basis

for H2(Ω) and f ∈ H2(Ω),

f(x, t) =
∞∑
n=1

fn(t)φn(x) =⇒ [PN(f)](x, t) =
N∑
n=1

fn(t)φn(x).

The integer N is the number of modes included in the truncation. The constant µ is a

relaxation parameter that determines the strength of the coupling between T̃ and the “true”

temperature T . The goal of Chapter 2 is to analyze the strength of the coupling (in particular,

requirements on µ and N) needed to synchronize the assimilating variables ũ and T̃ with

the data variables u and T .

Ideally, T is constructed from geological measurements. Unfortunately, obtaining real-

world temperature and velocity data from the mantle is impractical for a few reasons.

(i) The mantle is buried beneath 3–20 km of crust and is mostly composed of materials

that stay around 500–900◦C at all times [25].

(ii) The mantle evolves on geologic time scales; any measurements taken within the same

9

www.manaraa.com

decade correspond to virtually the same time t in the model.

(iii) The surface of the earth is only adjacent to the top layer of the mantle, so even if

direct sampling were possible, we could only obtain measurements close to the upper

boundary layer (near x3 = 1 in the model).

Sparse temperature measurements are sometimes possible by observing volcanic activity [25],

but observing the velocity field of the mantle is nigh impossible.

In the absence of data, we set up additional equations for the evolution of u and T . Thus

the full data assimilation problem for Pr =∞ is

−∆u = −∇p+ Rae3T,

∇ · u = 0,

∂tT + (u · ∇)T = ∆T,

u|x3=0 = u|x3=1 = 0,

T |x3=0 = 1, T |x3=1 = 0,

u, T are periodic in x1 and x2,

T (x, 0) = T0(x),

−∆ũ = −∇p̃+ Rae3T̃ ,

∇ · ũ = 0,

∂tT̃ + (ũ · ∇)T̃ = ∆T̃ − µPN(T̃ − T),

ũ|x3=0 = ũ|x3=1 = 0,

T̃ |x3=0 = 1, T̃ |x3=1 = 0,

ũ, T̃ are periodic in x1 and x2,

T̃ (x, 0) = T̃0(x).

The goal is to show that

lim
t→∞
‖T̃ (x, t)− T (x, t)‖ = lim

t→∞
‖ũ(x, t)− u(x, t)‖ = 0 ∀x ∈ Ω

with an appropriate norm, even when the initial temperature states T̃0 and T0 differ. This

will require some conditions on Ra, µ, and N .

Previous studies in data assimilation for Rayleigh-Bénard convection, including [2, 13],

assimilate the velocity field into the nudging equations as well as the temperature. The

novelty of the method given above is that only the temperature T , not the velocity u, is

10

www.manaraa.com

present in the nudging equations. As we will see in Chapter 2, this is possible because

Pr =∞.

1.4 Dedalus

Verifying our rigorous results with direct numerical simulation means running numerous fluid

simulations. Numerical solvers for partial differential equations are usually very complex,

requiring careful adaptation to each specific situation. Dedalus [6] is a new Python package

that is being developed2 specifically to overcome this problem: it supports symbolic entry

for equations and boundary conditions, making it very easy to tweak and adapt to different

problems. Dedalus uses pseudospectral methods to solve differential equations, meaning that

the only real requirement is that the domain be “spectrally representable.” Since our spatial

domain Ω has a simple box geometry and some periodicity, our data assimilation problem is

a perfect setting for Dedalus.

As a demonstration,3 consider the following Poisson equation on the two-dimensional

domain [0, 2π]× [0, 1], supplemented with boundary and periodicity conditions:

−∆u = 10 sin(x/2)2(y − y2), (1.20)

u(x1, 0) = sin(8x1), ux2(x1, 1) = cos(x1),

u(x1 + 2π, x2) = u(x1, x2).

The setup and solver code is remarkably simple. The result is displayed in Figure 1.2.

2See http://dedalus-project.org.
3This example is from the documentation at https://bitbucket.org/dedalus-project/dedalus/src.

11

http://dedalus-project.org
https://bitbucket.org/dedalus-project/dedalus/src

www.manaraa.com

import numpy as np
from matplotlib import pyplot as plt
from dedalus import public as de

Set up the problem domain using a Fourier basis for the periodic direction.
x_basis = de.Fourier('x', 256, interval=(0, 2*np.pi)) # Periodic
y_basis = de.Chebyshev('y', 128, interval=(0, 1)) # Non-periodic
domain = de.Domain([x_basis, y_basis], grid_dtype=np.float64)
problem = de.LBVP(domain, variables=['u','uy'])

Define the problem with symbolic entry.
problem.add_equation("uy - dy(u) = 0") # uy = du/dy.
problem.add_equation("dx(dx(u)) + dy(uy) = -10 * sin(x/2)**2 * (y - y**2)")

Add boundary conditions.
problem.add_bc("left(u) = left(sin(8*x))") # Dirichlet condition.
problem.add_bc("right(uy) = right(cos(x))") # Neumann condition.

Solve the problem.
solver = problem.build_solver()
solver.solve()

Extract and visualize the solution.
u = solver.state['u']['g'] # 'g' gets the real
fig, ax = plt.subplots(1,1) # solution, not the
im = ax.pcolormesh(u.T, cmap="inferno") # basis coefficients.
ax.axis("off")
fig.colorbar(im, ax=ax)
plt.show()

Figure 1.2: The solution of (1.20), calculated with Dedalus. Note how the solution is hori-
zontally periodic and satisfies the vertical boundary conditions.

Note the following details about the example simulation code given above.

12

www.manaraa.com

• The periodic direction (x) is represented with a Fourier basis, and the non-periodic

direction (y) is represented with a Chebyshev basis. Dedalus only symbolically handles

first order terms in non-periodic domains, so we explicitly define uy with the line

problem.add_equation("uy - dy(u) = 0").

• When equations are entered symbolically, all linear terms must be on the left side of

the equation. This is because Dedalus uses implicit-explicit timestepping; linear terms

are evolved implicitly and nonlinear terms are treated explicitly.

• Since Dedalus uses pseudospectral techniques, state variables are represented in coef-

ficient space. If u = solver.state['u'] is one of the state variables, use u['c'] to

view the coefficient array and u['g'] to view the real-valued array. This particular

point is important in the implementation of PN (see Section 3.2.1).

This extremely flexible, high-level system can be adapted to many problems. Dedalus

implements a variety of time stepping schemes for initial value problems. We use an RK-443

method (de.timesteppers.RK443), but there are other options.

See http://dedalus-project.readthedocs.io/en/latest/getting_started.html for

the official Dedalus tutorial and further examples.

1.5 Outline

We begin in Chapter 2 by examining the data assimilation problem presented in Section 1.3

from a mathematical standpoint. Theorem 2.6 presents, with a careful proof, the main result

that the data and assimilating equations synchronize under suitable conditions. Chapter 3

validates Theorem 2.6 by presenting the results of corresponding numerical experiments.

Finally, in Chapter 4, we explore extensions of the previous data assimilation model where

Pr <∞, state the analogs to Theorem 2.6, and show corresponding numerical results.

13

http://dedalus-project.readthedocs.io/en/latest/getting_started.html

www.manaraa.com

Chapter 2. Infinite Prandtl Assimilation

In this chapter we examine the data assimilation system introduced in Section 1.3, the

Boussinesq approximation where Pr =∞ and the accompanying nudging equations:

−∆u = −∇p+ Rae3T,

∇ · u = 0,

∂tT + u · ∇T = ∆T,

u|x3=0 = u|x3=1 = 0,

T |x3=0 = 1, T |x3=1 = 0,

u, T are periodic in x1 and x2,

T (x, 0) = T0(x),

(2.1)

−∆ũ = −∇p̃+ Rae3T̃ ,

∇ · ũ = 0,

∂tT̃ + ũ · ∇T̃ = ∆T̃ − µPN(T̃ − T),

ũ|x3=0 = ũ|x3=1 = 0,

T̃ |x3=0 = 1, T̃ |x3=1 = 0,

ũ, T̃ are periodic in x1 and x2,

T̃ (x, 0) = T̃0(x).

(2.2)

Recall that (2.1) is called the truth or data equations, and (2.2) is called the nudging or

assimilating equations. Defining w = ũ − u, S = T̃ − T , and q = p̃ − p, the goal of the

following analysis is to show that S, q → 0 and w→ 0 as t→∞ in the appropriate spaces,

given specific conditions on the relaxation parameter µ and the number of projected modes N

relative to Ra. First, we establish the appropriate functional setting. Then, after reviewing

some well-known results pertaining to the regularity and energy of (2.1), we state and prove

a theorem that specifies the strength of the coupling required to achieve synchronization

between (2.1) and (2.2).

14

www.manaraa.com

2.1 Functional Setting

2.1.1 Function Spaces. Let Ω = [0, L]2 × [0, 1]. Following the notation of [23], we

consider the function spaces

L2
per(Ω) := {v ∈ L2(Ω) : v(x1 + L, x2, x3, t) = v(x1, x2, x3, t) for a.e. x1 ∈ [0, L], (2.3)

:= {v ∈ L2(Ω) : v(x1, x2 + L, x3, t) = v(x1, x2, x3, t) for a.e. x2 ∈ [0, L]},

H := {v ∈ L2
per(Ω)3 : ∇ · v = 0,v|x3=0 = v|x3=1 = 0}, (2.4)

V := H ∩H1(Ω)3, (2.5)

V := {v ∈ C∞c (Ω) : ∇ · v = 0, v(x1 + L, x2, x3, t) = v(x1, x2, x3, t), (2.6)

:= {v ∈ C∞c (Ω) : ∇ · v = 0, v(x1, x2 + L, x3, t) = v(x1, x2, x3, t)}.

Table 2.1 explains these function spaces more explicitly. See Appendix A.3 for descriptions

of the common spaces L2(Ω), H1(Ω), H1
0 (Ω), and C∞c (Ω).

Space Description

L2
per(Ω)

The square-integrable functions on Ω that are L-periodic in x1 and x2,
except perhaps on a set of measure zero.

H
Divergence free vector fields where each component is a member of
L2
per(Ω) and vanishes on the vertical boundaries.

V
Vector fields in H where each component has first-order,
square-integrable weak derivatives.

V Smooth functions with compact support over Ω that are divergence free
and L-periodic in x1 and x2.

Table 2.1: Descriptions of the spaces (2.3)–(2.6).

2.1.2 Projection Operators. Let {(λn, φn)}∞n=1 denote the eigenpairs of −∆, meaning

−∆φn = λnφn. Then each f ∈ H2(Ω) can be expressed in terms of the eigenfunctions as

f(x, t) =
∞∑
n=1

fn(t)φn(x), fn(t) = 〈f(t), φn〉 =

∫
Ω

f(x, t)φn(x) dx.

15

www.manaraa.com

In addition, let each φn be scaled so that

∫
Ω

φi(x)φj(x) dx = δij =


1 i = j

0 i 6= j.

That is, we assume that the set {φn}∞n=1 is orthonormal.

For each N ≥ 0, define the projections PN , QN by

PN(f) =
N∑
n=1

fnφn, QN(f) = [I − PN](f) =
∞∑

n=N+1

fnφn,

where I is the identity operator. In other words, PN is a truncation of the eigenfunction

expansion, and QN is its orthogonal complement. Using the orthogonality of the eigenbasis,

we have

∫
Ω

PN(f)QN(f) dx =

∫
Ω

(
N∑
i=1

fiφi

)(
∞∑

j=N+1

fjφj

)
dx =

∑
i≤N
j>N

fifj

∫
Ω

φiφj dx = 0, (2.7)

and

‖PN(f)‖2
L2(Ω) + ‖QN(f)‖2

L2(Ω) =

∫
Ω

(
N∑
i=1

fiφi

)2

+

(
∞∑

j=N+1

fjφj

)2

dx

=

∫
Ω

N∑
i=1

f 2
i φ

2
i +

∞∑
j=N+1

f 2
j φ

2
j dx

=

∫
Ω

(
∞∑
k=1

fiφi

)2

dx

= ‖f‖2
L2(Ω). (2.8)

16

www.manaraa.com

2.2 Regularity

For the analysis of the data assimilation system (2.1)–(2.2), we wish to treat each of the

variables u, T , ũ, and T̃ as functions with a degree of smoothness. We appeal to [26] to

show the eventual regularity of suitable weak solutions and existence of a global attractor.

First, we define what it means to be a weak solution to the original Boussinesq system

(1.8)–(1.13) with Pr <∞.

Definition 2.1. A pair (u, T) is a weak solution to (1.8)–(1.10) with boundary conditions

(1.11)–(1.13) and initial conditions (u0, T0) on the time interval [0, T ∗] if

u ∈ L∞(0, T ∗;H) ∩ L2(0, T ∗;V) ∩ Cw([0, T ∗];H),

u′ ∈ L4/3(0, T ∗;V ′),

T ∈ L∞(0, T ∗;L2
per(Ω)) ∩ L2(0, T ∗;H1

0 (Ω)) ∩ Cw([0, T ∗];L2
per(Ω)),

T ′ ∈ L4/3(0, T ∗;H−1(Ω))),

u(0) = u0, T (0) = T0,

collectively satisfy

1

Pr

(
d

dt
〈u,v〉+ 〈(u · ∇)u,v〉

)
+ 〈∇u,∇v〉 = Ra〈T, v3〉 ∀v ∈ V, (2.9)

d

dt
〈T, η〉+ 〈u · ∇T, η〉+ 〈∇T,∇η〉 = 〈u3, η〉 ∀η ∈ H1

0 (Ω), (2.10)

as well as the energy inequality and maximum principle:

1

Pr
‖u(t)‖2

L2(Ω) + 2

∫ t

0

‖∇u(s)‖2
L2(Ω)ds ≤

1

Pr
‖u0‖2

L2(Ω) + 2Ra

∫ t

0

〈T (s), u3(s)〉 ds, (2.11)

‖(T − 1)+(t)‖2
L2(Ω) + 2

∫ t

0

‖∇(T − 1)+(s)‖2
L2(Ω) ds ≤ ‖(T0 − 1)+‖2

L2(Ω), (2.12)

‖T−(t)‖2
L2(Ω) + 2

∫ t

0

‖∇T−(s)‖2
L2(Ω) ds ≤ ‖(T0)−‖2

L2(Ω). (2.13)

17

www.manaraa.com

We then have the following theorem from [26].

Proposition 2.2. Let (u0, T0) ∈ H×L2
per(Ω). There exists a suitable weak solution (u, T) of

(1.8)–(1.13) corresponding to (u0, T0). Moreover, there exists an absolute constant K0 > 0

such that if PrRa−1 ≥ K0, then there exists a time T ∗ > 0 for which all suitable weak

solutions corresponding to (u0, T0) are regular for all t > T ∗ > 0. Lastly, there exists an

absolute constant K1 > 0 such that if PrRa−1 ≥ K1, then (1.8)–(1.13) has a global attractor

in V ×H1
0 (Ω). In particular, (1.8)–(1.13) possesses an absorbing ball in V ×H1

0 (Ω); that is,

there exist ρ1, ρ2 > 0 such that for any R1, R2 > 0, there is a constant t1(R1, R2) > 0 such

that

(u(t), T (t)) ∈ BV (ρ1)× BH1(Ω)(ρ2), t ≥ t1(R1, R2), (2.14)

for all (u0, T0) ∈ BV (R1)× BH1(Ω)(R2), where

B(ρ1, ρ2) = BV (ρ1)× BH1(Ω)(ρ2).

Here BX(ρ) represents a ball of radius ρ in the space X.

The application of the maximum principle is crucial to obtaining Proposition 2.2. How-

ever, it is not immediately clear how to properly adapt the argument for (2.1)–(2.2) [23, 26]

to establish a maximum principle (see Lemma 2.5) for the assimilating variable T̃ due to the

additional term −µPN(T̃ − T) in (2.2).1 However, since we are assuming (u, T) is a regular

solution to (1.8)–(1.13), it is straightforward to verify global existence and uniqueness for the

associated nudged system by considering instead the corresponding system for the difference

(w, S), where w = ũ−u and S = T̃ −T . In this setting, we need only appeal to a maximum

principle for T , rather than for T̃ . The well-posedness then follows in a standard fashion

[14], which we state as the following result.

1See [17] for a case where a maximum principle is necessarily developed in spite of the projection term.

18

www.manaraa.com

Proposition 2.3. Let ρ = (ρ1, ρ2) be as in Proposition 2.2 and (u, T) satisfy (2.14) for

all t ≥ 0. Suppose (ũ0, T̃0) ∈ BH1

R1
(0) × BH2

R2
(0). Then there exists a unique global regular

solution (ũ, T̃) to (2.1).

Going forward, we assume that (u, T) and (ũ, T̃) are regular solutions to (2.1)–(2.2) such

that (u, T) belongs to the absorbing ball described by (2.14) in Proposition 2.2. In other

words, (u, T) and (ũ, T̃) are as smooth as we need them to be.

2.3 A Priori Estimates

The following are well-known a priori estimates for Stokes’ equations [10] and the drift-

diffusion equation, where the advecting velocity field is divergence free [23, 26].

Lemma 2.4. Let n ≥ 2 and Ω ⊂ Rn be an open, bounded set with boundary ∂Ω ∈ C2. For

any f ∈ L2(Ω)n, there exists a unique u ∈ H2(Ω)n ∩ V and p ∈ H1(Ω) (up to constants)

such that

−∆u = −∇p+ f , ∇ · u = 0, u|∂Ω = 0.

Moreover, there exists an absolute constant C = C(Ω) > 0 such that

‖u(t)‖H2(Ω) + ‖p(t)‖H1(Ω) ≤ C‖f(t)‖L2(Ω).

Lemma 2.5. Let u be a smooth divergence-free vector field over Ω with boundary conditions

u|x3=0 = u|x3=1 = 0, and let T be a smooth solution to the temperature equation

∂tT + u · ∇T −∆T = 0,

T (0) = T0, T |x3=0 = 1, T |x3=1 = 0.

19

www.manaraa.com

Then there exist η, T̄ such that

T = T̄ + η, η = (T − 1)+ − T−,

and

0 ≤ T̄ (t) ≤ 1, ‖η(t)‖L2(Ω) ≤ C
(
‖T0‖L2(Ω) + 1

)
e−t,

for some absolute constant C > 0. In particular,

‖T (t)‖L2(Ω) ≤ C0

(
‖T0‖L2(Ω) + 1

)
, t ≥ 0.

2.4 Main Theorem

We now state and prove the main theorem of this chapter, showing that (2.1) and (2.2)

synchronize under certain conditions.

Theorem 2.6 (Infinite Prandtl Synchronization). Let (u, T) and (ũ, T̃) satisfy (2.1)–(2.2),

and suppose that ‖T0‖L2(Ω), ‖T̃0‖L2(Ω) ≤ M for some M > 0. Then there exists an absolute

constant C0 > 0 such that if

1

2
λN ≥ µ and µ ≥ C0

2
Ra2,

then

‖(T̃ − T)(t)‖2
L2(Ω) + Ra−2‖(ũ− u)(t)‖2

H2(Ω) ∈ O(e−µt)

for all t ≥ 0.

Proof. Define w = ũ − u, S = T̃ − T , and q = p̃ − p and subtract the data momentum

20

www.manaraa.com

equation in (2.1) from the assimilating momentum equation in (2.2)

−∆ũ + ∆u = −∇p̃+ Rae3T̃ +∇p− Rae3T

−∆(ũ− u) = −∇(p̃− p) + Rae3(T̃ − T)

−∆w = −∇q + Rae3S.

The incompressibility conditions give ∇ · w = 0. For the temperature equations, note this

identity that follows from the linearity of the advection operator (see Appendix A.2.6)

(ũ · ∇)T̃ − (u · ∇)T = (ũ · ∇)T̃ − (ũ · ∇)T + (ũ · ∇)T − (u · ∇)T

= (ũ · ∇)(T̃ − T) + ((ũ− u) · ∇)T

= (ũ · ∇)S + (w · ∇)T.

Now subtract the temperature equations

∂tT̃ + (ũ · ∇)T̃ − ∂tT − (u · ∇)T = ∆T̃ − µPN(T̃ − T)−∆T

∂t(T̃ − T) + (ũ · ∇)T̃ − (u · ∇)T = ∆(T̃ − T)− µPN(T̃ − T)

∂tS + (ũ · ∇)S + (w · ∇)T = ∆S − µPN(S).

We therefore arrive at the system

−∆w = −∇q + Rae3S, (2.15)

∇ ·w = 0, (2.16)

∂tS + ũ · ∇S + w · ∇T = ∆S − µPN(S), (2.17)

w|x3=0 = w|x3=1 = 0, S|x3=0 = S|x3=1 = 0, (2.18)

w, S are periodic in x1 and x2, (2.19)

S(x, 0) = T̃0(x)− T0(x).

21

www.manaraa.com

Note that (2.15) satisfies Lemma 2.4 with u = w, p = q, and f = Rae3S. That is,

‖w‖H2(Ω) + ‖q‖H1(Ω) ≤ C‖Rae3S‖L2(Ω). (2.20)

Therefore, it is sufficient to show that S → 0 in L2(Ω). In other words, as long as the

temperature fields synchronize, the velocity fields will synchronize as well.

Next, integrating by parts (Proposition B.3) results in the identit.

∫
Ω

−S∆S dx =

∫
Ω

∇S · ∇S dx−
∫
∂Ω

S(∇S · ν) ds =

∫
Ω

∇S · ∇S dx. (2.21)

The boundary integral vanishes due to the boundary and periodicity conditions on S in

(2.18)–(2.19). We also have, as a result of Corollary B.2 (with g = S, F = Sũ),

∫
Ω

S(ũ · ∇)S dx = −
∫

Ω

(∇ · Sũ)S dx +

∫
∂Ω

S(Sũ · ν) dσ

= −
∫

Ω

(∇S · ũ)S + (∇ · ũ)S dx = −
∫

Ω

S(ũ · ∇S) dx

=⇒
∫

Ω

S(ũ · ∇S) dx = 0. (2.22)

In addition, due to (2.7),

∫
Ω

SPN(S) dx =

∫
Ω

(QN(S) + PN(S))PN(S) dx

=

∫
Ω

QN(S)PN(S) + PN(S)2 dx = ‖PN(S)‖2
L2(Ω). (2.23)

Now multiply (2.17) by S on both sides, integrate over Ω, and use (2.21)–(2.23) to simplify

22

www.manaraa.com

the resulting equation.

∫
Ω

SSt + S(ũ · ∇)S + S(w · ∇)T dx =

∫
Ω

S∆S − µSPN(S) dx∫
Ω

d

dt

[
1

2
S2

]
− S∆S + µSPN(S) dx = −

∫
Ω

S(ũ · ∇)S + S(w · ∇)T dx

1

2

d

dt

∫
Ω

S2 dx +

∫
Ω

∇S · ∇S dx + µ

∫
Ω

SPN(S) dx = −
∫

Ω

S(w · ∇)T dx

1

2

d

dt
‖S‖2

L2(Ω) + ‖∇S‖2
L2(Ω) + µ‖PN(S)‖2

L2(Ω) = −
∫

Ω

(w · ∇T)S dx. (2.24)

Assume that N > 0 is chosen sufficiently large so that

1

2
λN ≥ µ and µ ≥ C0

2
Ra2, (2.25)

where C0 > 0 is, as of yet, unspecified. After an integration by parts, an application of the

Sobolev embedding H2(Ω) ↪→ L∞(Ω), Lemma 2.4, and Lemma 2.5 imply that there exists a

function η satisfying ‖η(t)‖L2(Ω) ∈ O(e−t) such that

∣∣∣∣∫
Ω

(w · ∇T)S dx

∣∣∣∣ ≤ ‖w(t)‖L∞(Ω)‖T (t)‖L2(Ω)‖∇S(t)‖L2(Ω)

≤ CRa‖S(t)‖L2(Ω)‖T (t)‖L2(Ω)‖∇S(t)‖L2(Ω)

≤ 1

2
‖∇S(t)‖2

L2(Ω) + CRa2‖T (t)‖2
L2(Ω)‖S(t)‖2

L2(Ω)

≤ 1

2
‖∇S(t)‖2

L2(Ω) + CRa2(1 + ‖η(t)‖2
L2(Ω))‖S(t)‖2

L2(Ω). (2.26)

On the other hand, due to (2.8) and the inverse Poincaré inequality (Proposition B.5),

and since N > 0 satisfies the first condition in (2.25) (so that 1
2
− µ

λN
≥ 0), it follows that

1

2
‖∇S‖2

L2(Ω) + µ‖PN(S)‖2
L2(Ω) =

1

2
‖∇S‖2

L2(Ω) − µ‖QN(S)‖2
L2(Ω) + µ‖S‖2

≥
(

1

2
− µ

λN

)
‖∇S‖2

L2(Ω) + µ‖S‖2
L2(Ω)

≥ µ‖S‖2
L2(Ω). (2.27)

23

www.manaraa.com

This last inequality (2.27) can be combined with (2.24) and (2.26) by adding a few terms:

µ‖S‖2
L2(Ω) +

1

2

d

dt
‖S(t)‖2

L2(Ω) +
1

2
‖∇S(t)‖2

L2(Ω)

≤ 1

2

d

dt
‖S(t)‖2

L2(Ω) + ‖∇S(t)‖2
L2(Ω) + µ‖PN(S)‖2

L2(Ω)

= −
∫

Ω

(w · ∇T)S dx

≤
∣∣∣∣∫

Ω

(w · ∇T)S dx

∣∣∣∣
≤ 1

2
‖∇S(t)‖2

L2(Ω) + CRa2(1 + ‖η(t)‖2
L2(Ω))‖S(t)‖2

L2(Ω).

Combining like terms, we arrive at

d

dt
‖S(t)‖2

L2(Ω) + 2
(
µ− CRa2(1 + ‖η(t)‖2

L2(Ω))
)
‖S(t)‖2

L2(Ω) ≤ 0.

This satisfies Gronwall’s inequality (Proposition B.4 with f(t) = ‖S(t)‖2
L2(Ω)), by which we

obtain

‖S(t)‖2 ≤ ‖S(0)‖2
L2(Ω) exp

(
−2µt+ CRa2

∫ t

0

(1 + ‖η(s)‖2
L2(Ω)) ds

)
.

Finally, by Lemma 2.5 and the second condition in (2.25), we deduce

‖S(t)‖2 ≤ ‖S(0)‖2
L2(Ω) exp

(
−2µt+ CRa2

∫ t

0

(1 + ‖η(s)‖2
L2(Ω))ds

)
≤ ‖S(0)‖2

L2(Ω) exp
(
C0Ra2

(
‖T0‖2

L2(Ω) + 1
))

exp (−µt) , (2.28)

as desired.

Theorem 2.6 shows that, given Ra and reasonable boundary conditions T0 and T̃0, we

can always choose µ and N large enough so that (u, T) and (ũ, T̃) eventually match. In the

next chapter, we use numerical simulations to verify that this is indeed the case.

24

www.manaraa.com

Chapter 3. Numerical Simulations

In this chapter we continue examining the data assimilation problem (2.1)–(2.2), but from

a numerical perspective. The objective is to validate the results of Theorem 2.6 and probe

the sharpness of the inequality condition

µ ≥ C0

2
Ra2 (3.1)

by strategically varying Ra, µ, and N .

3.1 Dimension Reduction

Numerical fluid simulations are computationally expensive in three dimensions, but the anal-

ysis of the previous chapter also applies to the two-dimensional setting where Ω is replaced

with Ψ = [0, L] × [0, 1] (with coordinates [x1, x3]). In two dimensions, there are a few

preliminary simplifications that make the numerical work more straightforward.

Let u : Ψ×T→ R2 have components [u1, u3]T. The incompressibility condition becomes

0 = ∇ · u = ∂x1u1 + ∂x3u3,

which can always be satisfied by introducing a stream function ψ : Ψ→ R [24, 15] such that

u1 = −∂x3ψ, u3 = ∂x1ψ.

Defining ζ = ∆ψ, we have the identities

u =

 u1

u3

 =

 −ψx3
ψx1

 ,
∇ · u = −ψx3x1 + ψx1x3 = 0,

∇× u = ∂x1u3 − ∂x3u1 = ψx1x1 + ψx3x3 = ∆ψ = ζ,

∇× ((u · ∇)u) = (u · ∇)(∇× u).

25

www.manaraa.com

The last equation is a consequence of Lemma A.1 because

∂x1u1 = −ψx3x1 = −ψx1x3 = −∂x3u3,

and because u has only two components.

Now the momentum equation can be simplified by taking the curl of both sides:

∇× (−∆u) = ∇× (−∇p+ Rae3T)

−∆(∇× u) = −(∇×∇p) + Ra(∇× e3T)

−∆(∆ψ) = Ra(Tx1 − 0)

−∆ζ = RaTx1 . (3.2)

The main advantage of (3.2) is that the pressure p drops out from (2.1); it also reduces

the momentum equation to a scalar equation that can be written without using u explicitly.

Repeating this reduction process for the assimilating system (2.2), we arrive at the simplified

data assimilation problem

−∆ζ = RaTx1 ,

∆ψ = ζ,

∂tT − ψx3Tx1 + ψx1Tx3 = ∆T,

∂xiψ|x3=0 = ∂xiψ|x3=1 = 0, i = 1, 3,

T |x3=0 = 1, T |x3=1 = 0,

ψx1 , ψx3 , T are periodic in x1,

T (x, 0) = T0(x),

(3.3)

−∆ζ̃ = RaT̃x1 ,

∆ψ̃ = ζ̃ ,

∂tT̃ − ψ̃x3T̃x1 + ψ̃x1T̃x3 = ∆T̃ − µPN(T̃ − T),

∂xiψ̃|x3=0 = ∂xiψ̃|x3=1 = 0, i = 1, 3,

T̃ |x3=0 = 1, T̃ |x3=1 = 0,

ψ̃x1 , ψ̃x3 , T̃ are periodic in x1,

T̃ (x, 0) = T̃0(x).

(3.4)

The implementation of (3.3)–(3.4) with Dedalus is fairly straightforward, if a bit lengthy.

26

www.manaraa.com

3.2 Minimal Simulation Code

3.2.1 Projection Operator. The most non-conventional part of (3.3)–(3.4) is the pro-

jection operator PN . Since Dedalus represents state variables in coefficient space, PN can be

implemented by directly setting certain entries of a state variable’s coefficient array to zero.

For simplicity, we alter the coefficients in both the x1 and x3 directions.

import numpy as np

def P_N(F, N, scale=False):
"""Calculate the Fourier mode projection of F with N terms."""
Set the spectral coefficients to 0 wherever n > N (in both axes).
X,Y = np.indices(F['c'].shape)
F['c'][(X >= N) | (Y >= N)] = 0

if scale:
F.set_scales(1)

return F['g']

3.2.2 Problem Definition. The following code translates (3.3)–(3.4) into a Dedalus

system where Ψ = [0, 4] × [0, 1], Ra = 10000, µ = 1, and N = 32. In the code, x1 and

x3 are called x and z, and the components u1 and u3 of u are called v and w, respectively.

Assimilating variables are denoted with a trailing underscore: T represents T , T_ represents

T̃ , and so on.

from dedalus import public as de
from dedalus.extras import flow_tools
from dedalus.core.operators import GeneralFunction

System Variables --
L = 4
xsize = 256
zsize = 128
Rayleigh=10000
mu = 1
N = 32

Bases and Domain --
x_basis = de.Fourier('x', xsize, interval=(0, L), dealias=3/2)
z_basis = de.Chebyshev('z', zsize, interval=(0, 1), dealias=3/2)
domain = de.Domain([x_basis, z_basis], grid_dtype=np.float64)

Initialize the problem as an IVP and add variables --------------------------
problem = de.IVP(domain, variables=['T', 'T_', # Temperature

'Tz', 'Tz_',
'psi', 'psi_', # Stream function
'psiz', 'psiz_',
'zeta', 'zeta_',# Laplace of stream
'zetaz', 'zetaz_'])

driving = GeneralFunction(domain, 'g', P_N, args=[])

27

www.manaraa.com

System parameters (these are saved to a JSON file).
problem.parameters['L'] = L # Domain parameters
problem.parameters['xsize'] = xsize
problem.parameters['zsize'] = zsize

problem.parameters['Ra'] = Rayleigh # Rayleigh number
problem.parameters["N"] = N # Assimilation parameters
problem.parameters["mu"] = mu
problem.parameters["driving"] = driving

Stream function substitutions: u = [v, w] = [-psi_z, psi_w]
problem.substitutions['v'] = "-dz(psi)"
problem.substitutions['v_'] = "-dz(psi_)"
problem.substitutions['w'] = "dx(psi)"
problem.substitutions['w_'] = "dx(psi_)"

Relate higher-order z derivatives (b/c Chebyshev).
problem.add_equation("psiz - dz(psi) = 0")
problem.add_equation("psiz_ - dz(psi_) = 0")
problem.add_equation("zetaz - dz(zeta) = 0")
problem.add_equation("zetaz_ - dz(zeta_) = 0")
problem.add_equation("Tz - dz(T) = 0")
problem.add_equation("Tz_ - dz(T_) = 0")

zeta = laplace(psi)
problem.add_equation("zeta - dx(dx(psi)) - dz(psiz) = 0")
problem.add_equation("zeta_ - dx(dx(psi_)) - dz(psiz_) = 0")

2D Boussinesq Equations ---
Ra T_x + laplace(zeta) = 0 (Infinite Prandtl number)
problem.add_equation("Ra*dx(T) + dx(dx(zeta)) + dz(zetaz) = 0")
problem.add_equation("Ra*dx(T_) + dx(dx(zeta_)) + dz(zetaz_) = 0")
T_t - laplace(T) = -u . grad(T) (+ driving Fourier projection)
problem.add_equation("dt(T) - dx(dx(T)) - dz(Tz) = -v*dx(T) - w*Tz")
problem.add_equation("dt(T_) - dx(dx(T_)) - dz(Tz_) "

"= -v_*dx(T_) - w_*Tz_ - mu*driving")

Boundary Conditions ---
Temperature heating from 'left' (bottom), cooling from 'right' (top).
problem.add_bc("left(T) = 1") # T(z=0) = 1
problem.add_bc("left(T_) = 1")
problem.add_bc("right(T) = 0") # T(z=1) = 0
problem.add_bc("right(T_) = 0")

Velocity field boundary conditions: no-slip.
u(z=0) = 0 --> v(z=0) = 0 = w(z=0)
problem.add_bc("left(psiz) = 0")
problem.add_bc("left(psiz_) = 0")
problem.add_bc("left(psi) = 0")
problem.add_bc("left(psi_) = 0")

u(z=1) = 0 --> v(z=1) = 0 = w(z=1)
problem.add_bc("right(psiz) = 0")
problem.add_bc("right(psiz_) = 0")
problem.add_bc("right(psi) = 0")
problem.add_bc("right(psi_) = 0")

Construct Solver --
Build the solver object for the problem.
solver = problem.build_solver(de.timesteppers.RK443)

28

www.manaraa.com

3.2.3 Initial Conditions. The Dedalus example in Section 1.4 is linear a boundary

value problem with no time variable, so no initial conditions are required. In this situation,

however, we must specify the initial states T0 and T̃0. For T0, there are two options.

• Set T0(x1, x3) = 1−x3+ε(x1, x3) for some small perturbation function ε : Ψ→ R. This

begins the simulation almost “from rest” which—though not physically relevant—is the

necessary starting point for initial experiments.

• Load T0 from the final state of a previous simulation with similar parameters. If said

simulation has run long enough, T will thus begin in a realistic convective state.

The correct choice for T̃0 is a little less obvious. Setting T̃0(x1, x3) = 1 − x3 assumes no

prior knowledge of T , but this strategy often results in an overly stiff scheme due to the

strength of the initial temperature difference ‖T̃0 − T0‖2
L2(Ω), and is therefore numerically

impractical. We could set T̃0 = PN(T0), since we assume that we can regularly observe the

first N modes of T at any given time. However, this often results in a very weak difference

‖T̃0 − T0‖2
L2(Ω) so that (3.3) and (3.4) appear essentially synchronized at t = 0. Instead, we

set T̃0 as a low-mode projection of T0 such as T̃0 = P4(T0). This is the “happy medium”

where ‖T̃0−T0‖2
L2(Ω) is small enough to avoid numerical stiffness, but large enough to observe

significant synchronization.

The following code sets T0(x1, x3) = 1 − x3 + ε sin(kx1) sin(2πx3) where ε = .0001 and

k = 3.117 and initializes T̃0 = P4(T0).

Initial conditions --
eps = 1e-4
k = 3.117
x,z = problem.domain.grids(scales=1)

Start T from rest plus a small perturbation.
T, T_ = solver.state['T'], solver.state['T_']
T['g'] = 1 - z + eps*np.sin(k*x)*np.sin(2*np.pi*z)
T.differentiate('z', out=solver.state['Tz'])

Start T_ as a low-mode projection of T (N = 4).
G = problem.domain.new_field()
G['c'] = solver.state['T']['c'].copy()
T_['g'] = P_N(G, 4, True)
T_.differentiate('z', out=solver.state['Tz_'])

29

www.manaraa.com

3.2.4 Iterative Solution. Having chosen initial conditions, the solver computes the

state variables at discrete time steps until reaching some stopping point T ∗. This requires

some care: it is possible for the solver to mishandle the computation due to numerical error,

so at each iteration we check that the quantities

1

Ra
‖u(t)‖2 and

1

Ra
‖ũ(t)‖2

are finite.

Dedalus makes it easy to save other useful quantities like ‖(T̃ − T)(t)‖L2(Ω) at each time

step. This version of the code only saves the state variables at each iteration, but the full

code (see Appendix C) saves each of the normed quantities used in the next section.

import time

Driving / projection function (P_N) arguments -------------------------------
dT = solver.state['T_'] - solver.state['T']
problem.parameters["driving"].args = [dT, N]
problem.parameters["driving"].original_args = [dT, N]

Stopping Parameters ---
solver.stop_sim_time = 2 # Length of simulation.
solver.stop_wall_time = np.inf # Real time allowed to compute.
solver.stop_iteration = np.inf # Maximum iterations allowed.

State snapshots ---
Save the temperature measurements in states/ files.
snaps = solver.evaluator.add_file_handler("states", sim_dt=.05,

max_writes=5000, mode="append")
snaps.add_task("T")
snaps.add_task("T_")
snaps.add_task("driving", name="P_N")

Control Flow --
cfl = flow_tools.CFL(solver, initial_dt=1e-4, cadence=1, safety=1,

max_change=1.5, min_change=0.01,
max_dt=0.01, min_dt=1e-10)

cfl.add_velocities(('v', 'w'))
cfl.add_velocities(('v_', 'w_'))

Flow properties (print during run; not recorded in the records files)
flow = flow_tools.GlobalFlowProperty(solver, cadence=1)
flow.add_property("sqrt(v **2 + w **2) / Ra", name='Re')
flow.add_property("sqrt(v_**2 + w_**2) / Ra", name='Re_')

MAIN COMPUTATION LOOP ---
try:

print("Starting main loop")
start_time = time.time()
while solver.ok:

Recompute time step and iterate.
dt = solver.step(cfl.compute_dt())

30

www.manaraa.com

Print info to the screen every 10 iterations.
if solver.iteration % 10 == 0:

info = "Iteration {:>5d}, Time: {:.7f}, dt: {:.2e}".format(
solver.iteration, solver.sim_time, dt)

Re = flow.max("Re")
Re_ = flow.max("Re_")
info += ", Max Re = {:f}".format(Re)
info += ", Max Re_ = {:f}".format(Re_)
print(info)
Make sure the simulation hasn't blown up.
if np.isnan(Re) or np.isnan(Re_):

raise ValueError("Reynolds number went to infinity!!"
"\nRe = {}, Re_ = {}".format(Re, Re_))

except BaseException as e:
print("Exception raised, triggering end of main loop.")
raise

finally:
total_time = time.time() - start_time
print("Iterations: {:d}".format(solver.iteration))
print("Sim end time: {:.3e}".format(solver.sim_time))
print("Run time: {:.3e} sec".format(total_time))
print("END OF SIMULATION\n")

See Appendix C for the full code, including implementations for loading T0 from an

existing simulation, visualizing results, and managing data files.

3.3 Results

Values of Ra that are of interest for mantle convection are typically between 107 and 108

[25]. However, the greater Ra, the more computationally expensive the simulation, and it is

numerically unstable to start T in an unnatural state such as T0 ≈ 0 at large Ra. We therefore

select logarithmically spaced Ra values from 104 to 109 and run a simulation for each Ra, one

after another. For the very first simulation (Ra = 104), we set T0(x1, x3) = 1−x3 + ε(x1, x3)

as in Section 3.2.3 and evolve the systems forward until reaching a nearly steady state.

Thereafter, we set T0 as the final T from the previous simulation and increment Ra. This

gives us realistic initial conditions for any given Ra.

For the assimilating system, we use the initial condition T̃0 = P4(T0) as discussed in

Section 3.2.3. Figure 3.1 shows an example of T0 and T̃0, together with subsequent end

states of T and T̃ for Ra ≈ 5.22× 107.

31

www.manaraa.com

−→

−→

Figure 3.1: Typical “before” and “after” snapshots of a successful numerical experiment.
On the top, the initial condition T0 compared with T at the end of a simulation. On the
bottom, the initial projected condition T̃0 = P4(T0) and the eventual T̃ at the end of the
simulation. Note that the post-simulation T and T̃ appear identical to the naked eye. This
particular simulation uses Ra ≈ 5.22× 107, µ = 12, 700, and N = 32.

To measure the synchronization of (3.3) and (3.4), we keep track of the norms

‖(T̃ − T)(t)‖L2(Ω), ‖(ũ− u)(t)‖L2(Ω), (3.5)

‖(∇T̃ −∇T)(t)‖L2(Ω), ‖(∇ũ−∇u)(t)‖L2(Ω), (3.6)

‖(T̃ − T)(t)‖H2(Ω), ‖(ũ− u)(t)‖H2(Ω), (3.7)

throughout the simulation. The H2(Ω) norms in (3.7) are calculated with the equivalent

formulations

‖T‖H2(Ω) =

(∫
Ω

(∂2
x1
T)2 + (∂x1∂x3T)2 + (∂2

x3
T)2 dx

)2

,

‖u‖H2(Ω) =

(∫
Ω

(∂2
x1
u1)2 + (∂x1∂x3u1)2 + (∂2

x3
u1)2 + (∂2

x1
u3)2 + (∂x1∂x3u3)2 + (∂2

x3
u3)2 dx

)2

,

and each error is normalized by dividing by the norms of the data variables. For example,

32

www.manaraa.com

to measure the temperature difference in L2(Ω), we compute

‖(T̃ − T)(t)‖L2(Ω)

‖T (t)‖L2(Ω)

at each simulation time t. For simplicity, we write these errors without the denominators.

Figure 3.2 shows how the error norms (3.5)–(3.7) decrease in the simulation from Figure

3.1. Though the analysis indicates that these norms should converge to εmachine ≈ 10−16,

seeing the errors decrease to about 10−9 is numerically satisfactory in this setting.

Figure 3.2: Synchronization in various norms for Ra ≈ 5.22× 107, µ = 12, 700, and N = 32
(the same conditions used in Figure 3.1). The temperature and velocity differences decrease
exponentially until flattening out at sufficiently small values. The temperature difference is
the smallest, a consequence of using only temperature observations for the assimilation.

3.3.1 Failure of the Usual Approach. Other studies of data assimilation for Rayleigh-

Bénard convection usually fix µ = 1 for all experiments and instead focus on the effects of

another parameter, such as the number of projection modes [2, 13]. However, Theorem 2.6

requires that µ be proportional to Ra2, so we do not expect synchronization with µ = 1 as

Ra increases. Indeed, Figure 3.3 shows that for Ra in the range of 4× 107 to 2× 108, using

µ = 1 results in either extremely slow convergence, or in no convergence at all.

33

www.manaraa.com

Figure 3.3: Convergence (or lack thereof) of ‖(ũ−u)(t)‖H2(Ω) +‖(T̃ −T)(t)‖H2(Ω) with µ = 1
and N = 32 for various values of Ra. For lower Ra, setting µ = 1 is sufficient to very slowly
induce synchronization; however, as Ra increases, µ = 1 quickly becomes too weak to nudge
the assimilating system toward the data at all.

3.3.2 Varying the Relaxation Parameter. To explore the relationship between Ra,

µ, and N needed for synchronization to occur, we fix two of the parameters at a time and

run several simulations with various values for the remaining parameter. First, we fix Ra, set

N = 32, and vary µ until synchronization can be observed within 0.005 units of simulation

time.1 Table 3.1 records the smallest value of µ where synchronization was observed; Figure

3.4 shows the convergence rates for a few different µ for Ra ≈ 3.89×107 and Ra ≈ 7.02×107.

Figure 3.4: ‖(ũ−u)(t)‖H2(Ω) +‖(T̃ −T)(t)‖H2(Ω) with N = 32 and various µ for two different
values of Ra. We begin to see satisfactory convergence around µ = 10, 700 and µ = 15, 300
for Ra ≈ 3.89× 107 and Ra ≈ 7.02× 107, respectively.

1A simulation of this length still usually requires several thousand iterations.

34

www.manaraa.com

Ra µ
1.1937766× 107 6, 300
1.6037187× 107 6, 500
2.1544346× 107 7, 900
2.8942661× 107 9, 400
3.8881551× 107 10, 700
5.2233450× 107 12, 700
7.0170382× 107 15, 300
9.4266845× 107 19, 400

1.26638017× 108 24, 900
1.70125427× 108 29, 900

Table 3.1: Minimal values of µ that result in synchronization within about 0.005 units of
simulation time for the given Ra with N = 32. These values represent the edge of what
works when N = 32: a lower µ may not stimulate convergence, but a larger µ will. See
Figure 3.5 for a quadratic least-squares fit.

Given the requirement (3.1) from Theorem 2.6, it is surprising to discover that—based

on Table 3.1—the relationship between µ and Ra is more linear than quadratic. Indeed, a

least squares fit of the data to a general quadratic of the form f(x) = a + bx + cx2 yields

coefficients of a ≈ 4.03 × 103, b ≈ 1.77 × 10−4, and c ≈ −1.37 × 10−13 (essentially c = 0).

See Figure 3.5.

Figure 3.5: Quadratic (but nearly linear) least-squares fit for the data in Table 3.1.

35

www.manaraa.com

3.3.3 Varying the Projection. The relaxation parameter µ is a system parameter with-

out much physical interpretation. The number of projected Fourier modes N , on the other

hand, indicates the amount of data that is “visible” to the assimilating system. Therefore,

a lower bound on N represents how much data is required in order to maintain an accurate

model. Fixing µ as given by Table 3.1, we decrease N to see how it affects synchronization.

See Figure 3.6.

Figure 3.6: ‖(ũ − u)(t)‖H2(Ω) + ‖(T̃ − T)(t)‖H2(Ω) for two different values of Ra, with µ
as listed in Tables 3.1 and 3.2 and for various values of N . For both Ra ≈ 3.89 × 107

and Ra ≈ 7.02 × 107, N = 10 appears to be the least number of modes that results in
synchronization.

Ra µ N
1.1937766× 107 6, 300 6
1.6037187× 107 6, 500 8
2.1544346× 107 7, 900 8
2.8942661× 107 9, 400 8
3.8881551× 107 10, 700 10
5.2233450× 107 12, 700 10
7.0170382× 107 15, 300 10
9.4266845× 107 19, 400 10

1.26638017× 108 24, 900 12
1.70125427× 108 29, 900 14

Table 3.2: Minimal values of N that result in synchronization within about 0.01 units of
simulation time for the given Ra and µ. In general, as long as an appropriate µ is chosen,
N = 16 is sufficient for physically relevant values of Ra.

3.3.4 Summary. The numerical simulations show that for relevant Ra, we can pick µ

large enough to nudge (3.4) toward (3.3); in particular, the experiments confirm Theorem

36

www.manaraa.com

2.6 and show that the conditions stated therein are stronger than necessary. Furthermore,

assimilation can be obtained with a relatively low number of modes even for large Ra, as

long as µ is chosen large enough. We took the approach of varying µ first and then N , but

it is just as feasible to vary µ for a fixed Ra and N .

37

www.manaraa.com

Chapter 4. Other Assimilation Schemes

In this chapter we return to the original Boussinesq approximation (1.8)–(1.13) with finite

Prandtl number Pr <∞. We give an overview of two data assimilation schemes: one where

the truth and nudging systems uses a momentum equation with Pr <∞, and one where the

truth system uses a Pr <∞ momentum equation but the nudging system uses the Pr =∞

formulation. The technical details are similar to those presented in Chapter 2, so here we

simplify the presentation of the analysis.

4.1 Finite Prandtl Assimilation

Consider the data assimilation problem

1
Pr

[∂tu + (u · ∇)u]−∆u = −∇p+ Rae3T,

∇ · u = 0,

∂tT + u · ∇T = ∆T,

u|x3=0 = u|x3=1 = 0,

T |x3=0 = 1, T |x3=1 = 0,

u, T are periodic in x1 and x2,

T (x, 0) = T0(x), u(x, 0) = u0(x),

(4.1)

1
Pr

[∂tũ + (ũ · ∇)ũ]−∆û = −∇p̂+ Rae3T̂ ,

∇ · û = 0,

∂tT̂ + û · ∇T̂ = ∆T̂ − µPN(T̂ − T),

û|x3=0 = û|x3=1 = 0,

T̂ |x3=0 = 1, T̂ |x3=1 = 0,

û, T̂ are periodic in x1 and x2,

T̂ (x, 0) = T̂0(x), û(x, 0) = û0(x).

(4.2)

In this setting, u and T are the data variables and û and T̂ are the assimilating variables.

4.1.1 Rigorous Results. Using the same functional setting and setup as in Chapter 2

leads to the following result, the analog of Theorem 2.6 for 0� Pr <∞. We do not provide

the proof here, but the ideas are the same as in the proof of Theorem 2.6.

38

www.manaraa.com

Theorem 4.1. Let (u, T) and (û, T̂) satisfy (4.1)–(4.2) with (u0, T0), (û0, T̂0) ∈ B(ρ1, ρ2),

respectively. There exist absolute constants C0, C1, C2 > 0 such that if

1

2
λN ≥ µ, µ ≥

(
1

2
+ Ra2

)
Pr, (4.3)

and

Pr ≥ max{1, 4C1/2
0 max{C1/2

2 , C
1/2
1 }(1 + Ra)5}, (4.4)

then

‖(û− u)(t)‖2
L2(Ω) + ‖(T̂ − T)(t)‖2

L2(Ω) ≤ O(e−(Pr/2)t)

holds for t ≥ 0.

Note that the results of Theorem 4.1 are less optimistic than those of Theorem 2.6 in

the sense that the inequality conditions on µ are much harsher, not to mention the strong

requirements on Pr in relation to Ra. Still, we expect to see some synchronization for

reasonably large values of µ and Pr.

4.1.2 Numerical Results. The dimension reduction process is the same as in Section

3.1, except now the momentum equation has the following extra terms:

∇×
(

1

Pr
[∂tu + (u · ∇)u]

)
=

1

Pr
[(∇× ∂tu) +∇× ((u · ∇)u)]

=
1

Pr
[∂t(∇× u) + (u · ∇)(∇× u)]

=
1

Pr
[ζt + (u · ∇ζ)]

=
1

Pr
[ζt − ψx3ζx1 + ψx1ζx3] .

39

www.manaraa.com

Thus we examine the following data assimilation problem (compare this to (3.3)–(3.4)):

1
Pr

[ζt − ψx3ζx1 + ψx1ζx3]−∆ζ = RaTx1 ,

∆ψ = ζ,

∂tT − ψx3Tx1 + ψx1Tx3 = ∆T,

∂xiψ|x3=0 = ∂xiψ|x3=1 = 0, i = 1, 3,

T |x3=0 = 1, T |x3=1 = 0,

ψx1 , ψx3 , T are periodic in x1,

T (x, 0) = T0(x), ζ(x, 0) = ζ0(x),

(4.5)

1
Pr

[
ζ̂t − ψ̂x3 ζ̂x1 + ψ̂x1 ζ̂x3

]
−∆ζ̂ = RaT̂x1 ,

∆ψ̂ = ζ̂ ,

∂tT̂ − ψ̂x3T̂x1 + ψ̂x1T̂x3 = ∆T̂ − µPN(T̂ − T),

∂xiψ̂|x3=0 = ∂xiψ̂|x3=1 = 0, i = 1, 3,

T̂ |x3=0 = 1, T̂ |x3=1 = 0,

ψ̂x1 , ψ̂x3 , T̂ are periodic in x1,

T̂ (x, 0) = T̂0(x), ζ(x, 0) = ζ0(x).

(4.6)

The code for (4.5)–(4.6) is the same as for (3.3)–(3.4), but with an adjustment for the

momentum equations.

Add the Prandtl number as a problem parameter (before defining equations).
Prandtl = 100
problem.parameters['Pr'] = Prandtl # Prandtl number

...

Pr(Ra T_x + laplace(zeta)) - zeta_t = u.grad(zeta)
problem.add_equation("Pr*(Ra*dx(T) + dx(dx(zeta)) + dz(zetaz)) - dt(zeta)"

" = v*dx(zeta) + w*zetaz")
problem.add_equation("Pr*(Ra*dx(T_) + dx(dx(zeta_)) + dz(zetaz_)) - dt(zeta_)"

" = v_*dx(zeta_) + w_*zetaz_")

The numerical results are similar to those presented in Section 3.3, but now we must also

consider the additional parameter Pr. First, we check that synchronization still occurs for

reasonable choices of Ra, µ, and N given a finite Pr, say Pr = 100. See Figure 4.1.

40

www.manaraa.com

Figure 4.1: Synchronization in various norms for Ra ≈ 5.22 × 107, µ = 18, 000, N = 32,
and Pr = 100. The temperature and velocity differences still decrease exponentially to zero,
despite the fact that Pr < ∞. However, the convergence is slow compared to the Pr = ∞
case (see Figure 4.2).

To simplify our exploration, for each value of Ra listed in Tables 3.1 and 3.2, we pick

µ so that the systems synchronize quickly. Then, with N = 32, we run simulations for

logarithmically spaced values of Pr from 1 to 100. Even with these larger-than-necessary

choices of µ, convergence is lost for small enough Pr. See Figure 4.2 for a few additional

examples and Table 4.1 for the chosen µ and the lowest Pr where synchronization still occurs.

Figure 4.2: ‖(û−u)(t)‖H2(Ω)+‖(T̂−T)(t)‖H2(Ω) with N = 32 and various Pr for two different
values of Ra, with µ as given in Table 4.1. The convergence is generally slower the lower
that Pr gets, until eventually there is no synchronization if Pr is too small.

41

www.manaraa.com

Ra µ Pr
1.1937766× 107 10, 000 75
1.6037187× 107 11, 000 56
2.1544346× 107 12, 000 56
2.8942661× 107 13, 000 100
3.8881551× 107 14, 000 42
5.2233450× 107 18, 000 42
7.0170382× 107 20, 000 42
9.4266845× 107 25, 000 31

1.26638017× 108 32, 000 31
1.70125427× 108 40, 000 31

Table 4.1: Minimal values of Pr that result in synchronization within about 0.01 units of
simulation time for the given Ra and µ with N = 32. The relationship here is much less
precise than those described in Tables 3.1 and 3.2 (for example, Ra ≈ 2.89× 107 is a bit of
an outlier), but it is interesting to note that lower Ra seem to require larger Pr. Whether
or not this is an effect of Ra increasing or µ increasing, however, is unclear.

There are two main points to take away from these results.

• Finite-but-large Prandtl data assimilation through only temperature measurements is

possible, though it is slow compared to the infinite Prandtl version in Chapters 2–3.

• The relationship between Ra, µ, N , and Pr remains unclear and would require further

measurements to precisely quantify. However, the fact that the assimilation works at

all with reasonably small Pr indicates that the inequality constraints in Theorem 4.1

are strongly overstated, or the constants in (4.4) are extremely small.

4.2 Hybrid Prandtl Assimilation

We conclude by briefly mentioning a data assimilation scheme where, unlike the schemes

we have considered so far, the momentum equations are not identical for the data and

assimilating variables: we use (4.1) as the truth and (2.2) for the nudging equations. That

is, we consider the problem

42

www.manaraa.com

1
Pr

[∂tu + (u · ∇)u]−∆u = −∇p+ Rae3T,

∇ · u = 0,

∂tT + u · ∇T = ∆T,

u|x3=0 = u|x3=1 = 0,

T |x3=0 = 1, T |x3=1 = 0,

u, T are periodic in x1 and x2,

T (x, 0) = T0(x), u(x, 0) = u0(x),

(4.7)

−∆ũ = −∇p̃+ Rae3T̃ ,

∇ · ũ = 0,

∂tT̃ + ũ · ∇T̃ = ∆T̃ − µPN(T̃ − T),

ũ|x3=0 = ũ|x3=1 = 0,

T̃ |x3=0 = 1, T̃ |x3=1 = 0,

ũ, T̃ are periodic in x1 and x2,

T̃ (x, 0) = T̃0(x).

(4.8)

This system is more realistic in the sense that Pr <∞ for actual mantle fluids (the “real-

world data”), but it also takes advantage of the more computationally tractable Pr = ∞

situation for the assimilation. The analysis is similar to that of (4.1)–(4.2); here we state

but do not prove the analog of 4.1.

Theorem 4.2. Let (u, T), (ũ, T̃) be a regular solution of (4.7)–(4.8) with initial conditions

(u0, T0) ∈ BV (ρ1)×BH1(Ω)(ρ2) and T̃0 ∈ BH1(Ω)(ρ2). There exists an absolute constant C0 > 0

such that if

λN
2
≥ µ and µ ≥ 4

3
C2

0 (ρ2 + 1)2 Ra2, (4.9)

then for any given fixed time interval [0, t],

Ra−1‖ũ(τ)− u(τ)‖H2(Ω) + ‖T̃ (τ)− T (τ)‖2
L2(Ω) ≤ O(e−µt) +O(Pr−1), 0 ≤ τ ≤ t. (4.10)

4.2.1 Numerical Results. The hybridization of the data assimilation problem is clever,

but the numerical results are disappointing. Take, for example, a simulation with Ra ≈

43

www.manaraa.com

5.22 × 107, µ = 18, 000 N = 32, and Pr = 100. For the finite Prandtl model in Section

4.1, this was completely successful (see Figure 4.1). In this situation, however, this set of

parameters fails spectacularly.

Figure 4.3: Hybrid assimilation with Ra ≈ 5.22 × 107, µ = 18, 000, N = 32, and Pr =
100. The temperature and velocity differences remain almost constant, with no hint of
convergence.

Figure 4.3 suggests that µ = 18, 000 is too small for Ra ≈ 5.22 × 107 in this setting. In

an attempt to achieve synchronization in an easier setting, we select a lower Rayleigh value

of Ra ≈ 8.89× 106 and raise µ drastically. However, the results are also underwhelming.

44

www.manaraa.com

Figure 4.4: Lack of synchronization in hybrid assimilation with Ra ≈ 8.89 × 106, N = 32,
and Pr = 100, with various µ values. Raising µ further results in numerical problems as
‖u(t)‖2 and/or ‖ũ(t)‖2 blow up in finite time.

This apparent failure is not a contradiction to Theorem 4.2; rather, it implies that the

conditions of the theorem require values of µ that are not numerically feasible. In other

words, though the analysis demonstrates the theoretical possibility of choosing µ so large

that synchronization occurs, the numerical failure of the hybrid system suggests that the

practical success of data assimilation is dependent on the data coming from the same model

as the simulated system, an unrealistically stringent restriction. Recall that the Boussinesq

approximation is effectively a “zeroth order” approximation for the mantle, meaning the true

physical system has several complicated secondary effects (some of which are unknown) that

are not included in the model. This numerical experimental failure in such a simple setting

suggests that data assimilation in general is not adaptable to settings where the exact model

is not known.

45

www.manaraa.com

Chapter 5. Conclusion

5.1 Summary

In Chapter 2, we examined a data assimilation scheme for the Boussinesq system with

Pr = ∞ and showed rigorously that synchronization occurs between the data and assimi-

lating equations under certain conditions on the relaxation parameter µ and the number of

projected modes N relative to the Rayleigh number Ra. That is, as long as there is enough

data (i.e., N is not too small), µ can be chosen large enough to guarantee synchronization.

Though this is a satisfying theoretical result, the numerical experiments in Chapter 3 show

that synchronization often occurs under much weaker conditions on µ and N than Theorem

2.6 requires. In addition, the numerical results also demonstrate situations in which the

assimilation fails, namely when µ and/or N are not large enough.

In Chapter 4, we examined two similar Boussinesq data assimilation problems where

Pr is large, but finite. When both the data and assimilating equations use Pr < ∞, the

theoretical and numerical results are comparable to those of Chapters 2 and 3, though the

synchronization occurs more slowly and the relationship between Ra, Pr, µ, and N remains

somewhat ambiguous. On the other hand, when the data equations use Pr < ∞ but the

assimilating equations use Pr = ∞, the numerical results fail to converge even though the

corresponding rigorous result provides theoretical conditions for synchronization. In short,

the numerical experiments show that the requirements in Theorems 2.6, 4.1, and 4.2 are

not sharp, and suggest that structural similarity in the truth and nudging equations is the

key factor that allows the data assimilation process to be successful and computationally

feasible.

5.2 Extensions

We conclude by discussing a few possible ways to extend the work presented in this thesis.

46

www.manaraa.com

5.2.1 Sampling Strategies. From an industrial perspective, one of the main problems

with the data assimilation schemes presented in Chapters 2–4 is the projection operator PN ,

which allows the assimilating system to “see” the data T everywhere in the domain, but

with low precision. A more likely scenario is that T is perfectly observable at part of the

domain and not at all in the rest. In a weather model, for example, data can be gathered

with high accuracy, but only at weather stations with the proper equipment. The notion of

complete observables over only part of the domain is also valid for mantle convection, since

volcanic activity can result in somewhat accurate readings for parts of the mantle [25]. Such

an observation scheme could be implemented in Dedalus with some careful array masking.

5.2.2 Plume Identification. Theorem 2.6 and its analogs prove synchronization in a

limiting sense, meaning T and T̃ match exactly in the limit as t→∞. Having the data and

assimilating variable match completely is desirable, but from a geologic and fluid-dynamical

perspective, the most important features to capture in the assimilation are the coherent

structures (the hot and cold plumes) that arise in this setting. Once the assimilating system

is sufficiently close to the data, it can be used to statistically analyze these structures. For

example, a clustering algorithm such as the k-means algorithm could identify the plumes

based on the assimilated temperature and fluid velocity. Successful synchronization may

then be defined as convergence of plume statistics.

5.2.3 Stochastic Data. Using a Boussinesq system in the place of real-world data is

the only practical way to currently approach this problem. However, in order to reflect the

noise present in nature and the error from experimental measurements, the truth equations

in each data assimilation scheme could be supplemented with a stochastic term (a random

variable).

47

www.manaraa.com

Appendix A. Notation

Most of the notation presented here is standard in vector calculus and applied mathematics

[16]. However, some familiar-looking notation in the Boussinesq equations (1.8)–(1.10) have

non-familiar meanings, and some definitions have different interpretations depending on the

dimension of the underlying space. While many of the notions here can be generalized to

arbitrary dimensions, we detail only the relevant 3- and 2-dimensional versions.

Let Ω ⊂ R3 and Ψ ⊂ R2 be spatial domains with boundaries ∂Ω and ∂Ψ, respectively,

and let T = [0,∞) be the generic time domain. Spatial coordinates are denoted as the

vectors x = [x1, x2, x3]T ∈ Ω or x = [x1, x2]T ∈ Ψ, and time is denoted t ∈ T. The standard

basis vectors in R3 are written e1 = [1, 0, 0]T, e2 = [0, 1, 0]T, and e3 = [0, 0, 1]T.

For this appendix, bold capital letters denote 3-dimensional vector fields, bold lower-

case letters denote 2-dimensional vector fields, and non-bold lower case letters denote scalar-

valued functions. For example, F : Ω×T→ R3 is a 3-dimensional vector field F = [f1, f2, f3]T

with smooth1 components fi : Ω × T → R for i = 1, 2, 3; likewise, f : Ψ × T → R2 is a 2-

dimensional vector field f = [f1, f2]T with smooth components fi : Ψ × T → R for i = 1, 2;

and f : Ω× T→ R is a smooth scalar-valued function.

1In this context, smooth typically means infinitely continuously differentiable, but we also use the term
loosely to mean “as differentiable as needed.”

48

www.manaraa.com

A.1 Vector Products

A.1.1 Dot Product. The usual Euclidean inner product of two vectors x and y of the

same length is denoted x · y and is the sum of the component-wise product,

x · y = [x1, x2, x3]T


y1

y2

y3

 =
3∑
i=1

xiyi.

Beware that the dot · is also used in divergence ∇·F (A.2) and the advection operator F ·∇

(A.10), a slight, but common abuse of notation.

A.1.2 Cross Product. The cross product of two vectors x,y ∈ R3 is defined as

x× y =


x1

x2

x3

×

y1

y2

y3

 =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣
=


x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 .

The somewhat odd determinant notation in the previous equation is standard. In the special

case that x and y are “two-dimensional” in the sense that x3 = 0 = y3, we have

x× y =


x1

x2

0

×

y1

y2

0

 =


0

0

x1y2 − x2y1

 .

With this motivation, we define the 2-dimensional cross product as a scalar:

x× y =

 x1

x2

×
 y1

y2

 =

∣∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣∣ = x1y2 − x2y1. (A.1)

49

www.manaraa.com

A.2 Derivatives

Partial derivatives are notated by

∂f

∂s
= ∂sf = fs.

Which style is used depends purely on which is clearest in context. Here s is an independent

(dummy) variable representing time or a spatial dimension.

A.2.1 Gradients.

Scalar Gradient. The gradient of a scalar-valued function is a vector-valued function

where the ith component is the ith spatial derivative of the original function:

∇f =


∂x1f

∂x2f

∂x3f

 .

We consider ∇f a column vector. Note that the gradient only takes derivatives in spatial

dimensions (∂tf is ignored).

Gradient Tensor. The vector gradient or gradient tensor of a vector field is the trans-

pose of its Jacobian matrix:

∇F =


∂x1f1 ∂x1f2 ∂x1f3

∂x2f1 ∂x2f2 ∂x2f3

∂x3f1 ∂x3f2 ∂x3f3

 =

[
∇f1 ∇f2 ∇f3

]
.

As with the scalar gradient, the time dimension is ignored.

50

www.manaraa.com

A.2.2 Divergence. The divergence operator transforms a vector field into a scalar-

valued function by summing the ith partial derivative of each ith component:

∇ · F = div(F) =
3∑
i=1

∂xifi. (A.2)

A.2.3 Curl. The curl of a 3-dimensional vector field is defined as

∇× F = ∇×


f1

f2

f3

 =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂x1 ∂x2 ∂x3

f1 f2 f3

∣∣∣∣∣∣∣∣∣∣
=


∂x2f3 − ∂x3f2

∂x3f1 − ∂x1f3

∂x1f2 − ∂x2f1

 .

As with the definition of the cross product, the determinant notation is standard.

If F is 2-dimensional in the sense that f3 = 0 and ∂x3f1 = 0 = ∂x3f2, then we have

∇× F =


0

0

∂x1f2 − ∂x2f1

 .

We therefore define the curl for a 2-dimensional vector field as a scalar-valued function:

∇× f = ∇×

 f1

f2

 =

∣∣∣∣∣∣∣
∂x1 ∂x2

f1 f2

∣∣∣∣∣∣∣ = ∂x1f2 − ∂x2f1. (A.3)

Compare (A.3) with (A.1).

A.2.4 Curl Identities. The following are well-known identities for the regular 3-dimensional

curl, which we cite without proof.

51

www.manaraa.com

Nullity. The curl of any gradient is the zero vector. Conversely, the divergence of any

curl is zero. That is,

∇× (∇f) = 0, (A.4)

∇ · (∇× F) = 0. (A.5)

Distributivity. The curl operator distributes over vector addition:

∇× (F + G) = (∇× F) + (∇×G). (A.6)

Linearity. The curl operator is linear with respect to vector addition and multiplication

by a scalar. That is, for any α, β ∈ R,

∇× (αF + βG) = α(∇× F) + β(∇×G). (A.7)

Commutativity. The curl operator commutes with partial derivatives, i.e.,

∂s(∇× F) = ∇× (∂sF). (A.8)

Product Rule. The curl operator follows a product rule involving the gradient:

∇× (gF) = g(∇× F) + (∇g)× F. (A.9)

That (A.7) and (A.8) hold for the 2-dimensional curl defined in (A.3) is obvious, and (A.5)

no longer makes sense in two dimensions, but we verify directly that the other properties

listed above hold as well. The key difference is that each of the vector equations listed above

are now scalar equations.

52

www.manaraa.com

Nullity. Compare to (A.4). In this case, the curl of any gradient is the scalar 0:

∇× (∇f) = ∂x2(∂x1f)− ∂x1(∂x2f) = 0.

Distributivity. Compare to (A.6). We have

∇× (f + g) = ∂x1(f2 + g2)− ∂x2(f1 + g1)

= (∂x1f2 − ∂x2f1) + (∂x1g2 − ∂x2g1) = (∇× f) + (∇× g)

Product Rule. Compare to (A.9). We have

∇× (gf) = ∂x1(gf2)− ∂x2(gf1)

= (∂x1g)f2 + g(∂x1f2)− (∂x2g)f1 − g(∂x2f1)

= g(∂x1f2 − ∂x2f1) + ((∂x1g)f2 − (∂x2g)f1) = g(∇× f) + (∇g)× f

A.2.5 Laplacians.

Scalar Laplacian. The Laplacian of a scalar-valued function is the divergence of its

gradient,

∆f = ∇2f = ∇ · (∇f) =
n∑
i=1

∂xixif.

We use the ∆f notation in this thesis. Note that ∆f is a scalar-valued function.

Vector Laplacian. The vector Laplacian or tensor Laplacian of a vector field is defined

by the equation

∆F = ∇(∇ · F)−∇× (∇× F).

53

www.manaraa.com

In Cartesian coordinates, this simplifies to

∆F =


∆f1

∆f2

∆f3

 .

Note that ∆F is a vector-valued function.

Due to (A.7) and (A.8), the curl operator commutes with the Laplacian operator:

∇× (∆F) = ∆(∇× F).

A.2.6 Advection Operator. The advection operator with respect to a vector field F is

defined as

F · ∇ =
3∑
i=1

fi∂xi . (A.10)

The operator may act on scalar functions and/or vector fields. In the case of a scalar function,

the notation is consistent with the usual gradient and dot operators:

(F · ∇)g =
3∑
i=1

fi∂xig = [f1, f2, f3]T


gx1

gx2

gx3

 = F · (∇g).

The definition is motivated by the fluid velocity vector u: Let x(t) ∈ Ω be a fixed

fluid particle at time t ∈ T so that ∂txi = ui for i = 1, 2, 3. Then for any vector field

G = G(x(t), t),

d

dt
G(x(t), t) = ∂tG +

3∑
i=1

∂txi∂xiG = ∂tG +
3∑
i=1

ui∂xiG = ∂tG + (u · ∇)G.

The operator D
Dt

= ∂t + u · ∇ is sometimes called the material derivative [9, 8].

54

www.manaraa.com

Note that the vector Laplacian is the divergence of the vector gradient, i.e.,

∇ · (∇F) = (∇ · ∇)F =
3∑
i=1

∂xi∂xiF = ∆F.

The advection operator is linear in that the mapping u 7→ (F · ∇)u is linear, and the

mapping F 7→ F · ∇ is linear:

(F · ∇)(αu + βv) =
n∑
i=1

fi(αu + βv)xi

= α
n∑
i=1

fiuxi + β
n∑
i=1

fivxi = α(F · ∇)u + β(F · ∇)v,

((αF + βG) · ∇)u =
n∑
i=1

(αfi + βgi)uxi

= α
n∑
i=1

fiuxi + β
n∑
i=1

giuxi = α(F · ∇)u + β(G · ∇)u.

Lastly, the advection operator commutes with the curl operator under certain conditions

in two dimensions. We state this more precisely as a lemma.

Lemma A.1. Let u : R2 × T → R2 be smooth with u = [u1, u2]T. If u1
x1

= −u2
x2

, then

∇× ((u · ∇)u) = (u · ∇)(∇× u).

Proof. To begin, compute

(∇u1)× ux1 + (∇u2)× ux2 =

 u1
x1

u1
x2

×
 u1

x1

u2
x1

+

 u2
x1

u2
x2

×
 u1

x2

u2
x2


= u1

x1
u2
x1
− u1

x1
u1
x2

+ u2
x1
u2
x2
− u1

x2
u2
x2

= −u2
x2
u2
x1

+ u2
x2
u1
x2

+ u2
x1
u2
x2
− u1

x2
u2
x2

= 0.

Note that these computations use the two-dimensional curl definition in (A.3). This identity,

55

www.manaraa.com

together with (A.6), (A.9), and (A.8), yields

∇× (u · ∇)u = ∇× (u1ux1 + u2ux2)

= ∇× (u1ux1) +∇× (u2ux2)

= u1(∇× ux1) + (∇u1)× ux1 + u2(∇× ux2) + (∇u2)× ux2

= u1∂x1(∇× u) + u2∂x2(∇× u) +
[
(∇u1)× ux1 + (∇u2)× ux2

]
= (u · ∇)(∇× u),

which is the desired result.

A.3 Spaces and Norms

In this section, we largely follow the notation of [12].

Let 0 < p <∞. For a point x = [x1, x2, . . . , xn]T ∈ Rn, the p-norm of x is

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, (A.11)

and the ∞-norm (sometimes called the “sup norm”) is ‖x‖∞ = maxi∈{1,...,n} |xi|. Given

another point y = [y1, y2, . . . , yn]T ∈ Rn, the Euclidean inner product of x and y is given by

〈x,y〉 =
n∑
i=1

xiyi.

We also make frequent use of the following function norms and the corresponding spaces.

A.3.1 Lp Spaces. Let f : Ω→ R and 0 < p <∞. The Lp norm of f over Ω is

‖f‖Lp(Ω) =

(∫
Ω

f(x)p dx

)1/p

,

56

www.manaraa.com

and the space Lp(Ω) is the set of all functions over Ω with finite Lp norm,

Lp(Ω) =
{
f : Ω→ R | ‖f‖Lp(Ω) <∞

}
.

The L∞ norm (p =∞) of f over Ω is

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)| = inf {k ∈ R | µ({x ∈ Ω | |f(x)| > k}) = 0} ,

where µ is the usual Lebesgue measure. As with the 0 < p <∞ case,

L∞(Ω) =
{
f : Ω→ R | ‖f‖L∞(Ω) <∞

}
.

For p = 1, we also define the space of locally integrable functions on Ω as

L1
loc(Ω) =

{
f : Ω→ R | f ∈ L1(K) for all compact subsets K ⊂ Ω

}
.

For a function f : Ω→ Rn, we define the norms

‖f‖Lp(Ω)n =

(∫
Ω

‖f(x)‖pp dx
)1/p

, ‖f‖L∞(Ω)n = ess sup
x∈Ω

‖f(x)‖∞,

where the norms within the integrand are the usual p norms for vectors given in (A.11). For

0 < p ≤ ∞, the corresponding space is

Lp(Ω)n =
{
f : Ω→ Rn | ‖f‖Lp(Ω)n <∞

}
= {f : Ω→ Rn | fi ∈ Lp(Ω), i = 1, 2, . . . , n} .

In the special case that p = 2, we associate L2(Ω) with the inner product

〈f, g〉L2(Ω) =

∫
Ω

f(x)g(x) dx

57

www.manaraa.com

for f, g ∈ L2(Ω), and

〈f ,g〉L2(Ω)n =

∫
Ω

〈f(x),g(x)〉 dx

for f ,g ∈ L2(Ω)n. We use 〈·, ·〉 to denote the inner product on Rn, Lp(Ω), or Lp(Ω)n,

depending on the context.

A.3.2 Sobolev Spaces. While the Lp spaces describe integrable functions, Sobolev spaces

describe functions that are differentiable in a weak sense. For this section, let α = (α1, α2, α3)

where each αi is a nonnegative integer. We write a general differential operator as

Dα =
∂α1

∂xα1
1

∂α2

∂xα2
2

∂α3

∂xα3
3

.

Let C∞(Ω) be the space of infinitely continuously differentiable functions on Ω and

C∞c (Ω) = {f ∈ C∞(Ω) | f has compact support in Ω} .

In other words, f ∈ C∞c (Ω) is smooth and vanishes on ∂Ω. An integrable function f ∈ L1
loc(Ω)

has a weak derivative Dα
wf if there exists a function g ∈ L1

loc(Ω) such that

∫
Ω

g(x)φ(x) dx = (−1)|α|
∫

Ω

f(x)Dαφ(x) dx

for all φ ∈ C∞c (Ω). If such a g exists, we define Dα
wf = g.

The Sobolev space W k
p (Ω) is the set of all functions f : Ω→ R such that for all |α| ≤ k,

Dα
wf exists and is a member of Lp(Ω). For p = 2, we write Hk(Ω) = W k

2 (Ω). The norm on

W k
p (Ω) is defined as

‖f‖Wk
p (Ω) =

∑
|α|≤k

‖Dα
wf‖

p
Lp(Ω)

1/p

.

58

www.manaraa.com

To obtain functions with desirable boundary conditions, we also define

H1
0 (Ω) = {f ∈ H1(Ω) | f has compact support in Ω}.

As with the Lp case, for vector fields we define the Sobolev space

W k
p (Ω)n =

{
f : Ω→ Rn | fi ∈ W k

p (Ω), i = 1, 2, . . . , n
}
.

Spaces Involving Time. Let f : Ω× T→ R. We say f ∈ Lp(Ω) if, for each t ∈ T, the

map x 7→ f(x, t) is in Lp(Ω). In this case the Lp norm of f is written ‖f(t)‖Lp(Ω). Similarly,

for f : Ω × T → Rn, we say f ∈ Lp(Ω)n if the map x 7→ f(x, t) is in Lp(Ω)n for all t ∈ T.

Note that these norms are still spatial in the sense that they involve an integration over Ω;

for integration in the time domain, we use the following spaces.

Let X be a Banach space with norm ‖·‖ (for instance, X = Lp(Ω) or X = W k
p (Ω)) and let

T ∗ > 0. The space Lp(0, T ∗;X) is the set of all strongly measurable functions u : [0, T ∗]→ X

such that

‖u‖Lp(0,T ∗;X) =

(∫ T ∗

0

‖u(t)‖p dt
)1/p

<∞

for 1 ≤ p <∞, and

‖u‖L∞(0,T ∗;X) = ess sup
0≤t≤T ∗

‖u(t)‖ <∞.

Similarly, C([0, T ∗];X) is the set of all continuous functions u : [0, T ∗]→ X satisfying

‖u‖C([0,T ∗];X) = max
0≤t≤T ∗

‖u(t)‖ <∞.

Finally, a function u ∈ L1(0, T ∗;X) has a weak derivative u′ if there exists a function

59

www.manaraa.com

v ∈ L1(0, T ∗;X) such that

∫ T ∗

0

φ′(t)u(t) dt = −
∫ T ∗

0

φ(t)v(t) dt

for all φ ∈ C∞c ([0, T ∗]).

60

www.manaraa.com

Appendix B. Analytical Tools

Here we review some fundamental tools for analyzing partial differential equations, including

the divergence theorem, integration by parts, and several important inequalities. Most of

these are used in the proof of Theorem 2.6.

For this appendix, let Ω ⊂ Rn be bounded, and let the boundary ∂Ω be Lipschitz with

outward-pointing normal ν.

B.1 Vector Calculus

Proposition B.1 (Divergence Theorem). Given u ∈ W 1
1 (Ω)n,

∫
Ω

∇ · u dx =

∫
∂Ω

u · ν dσ.

Corollary B.2. If F ∈ W 1
1 (Ω)n and g ∈ W 1

1 (Ω),

∫
Ω

F · ∇g + g(∇ · F) dx =

∫
∂Ω

gF · ν dσ.

Proof. The divergence operator obeys the product rule

∇ · (gF) =
n∑
i=1

∂xi(gfi) =
n∑
i=1

(∂xig)fi + g(∂xifi) = ∇g · F + g(∇ · F).

The result then follows by setting u = gF in Theorem B.1.

Proposition B.3 (Integration by Parts). If u ∈ H2(Ω), v ∈ H1(Ω),

∫
Ω

(−∆u)v dx =

∫
Ω

∇u · ∇v dx +

∫
∂Ω

v∇u · ν dσ.

61

www.manaraa.com

B.2 Inequalities

Proposition B.4 (Gronwall’s Inequality). Let f : [0, T ∗]→ [0,∞) be absolutely continuous

and φ : [0, T ∗]→ [0,∞) be integrable. If the differential inequality

f ′(t)− φ(t)f(t) ≤ 0

holds for almost every t ∈ [0, T ∗], then for 0 ≤ t ≤ T ∗ we have

f(t) ≤ f(0)e
∫ t
0 φ(s) ds.

Proposition B.5 (Inverse Poincaré Inequality). Let {(λk, φk)}∞k=1 be the eigenpairs of −∆,

ordered so that 0 < λ1 ≤ λ2 ≤ · · · . Suppose that f ∈ L2(Ω) can be expressed as a linear

combination of the first N basis functions:

f(x, t) =
N∑
k=1

fk(t)φk(x).

If
∫
∂Ω
f∇f · ν dσ = 0, then we have

‖∇f(t)‖2
L2(Ω) ≤ λN‖f(t)‖2

L2(Ω).

Proof. To begin, observe

−∆f = −∆
N∑
k=1

fkφk =
N∑
k=1

fk(−∆φk) =
N∑
k=1

fkλkφk ≤ λN

N∑
k=1

fkφk = λNf.

Integration by parts then yields the desired inequality:

‖∇f‖2
L2(Ω) =

∫
Ω

∇f · ∇f dx =

∫
Ω

(−∆f)f dx +

∫
∂Ω

f∇f · ν dσ ≤ λN

∫
Ω

f 2 dx = λN‖f‖2
L2(Ω).

62

www.manaraa.com

Appendix C. Simulation Code

The following files are coded in Python 3.6, the most recent version of Python at the time

of this writing. Most of the modules and packages that are used are part of the Python

standard library; those that are not may be installed with pip install <package>. See [6]

or http://dedalus-project.org/ for more on the third-party dedalus package, including

installation.

base simulator.py. Defines a class, BaseSimulator, that takes care of record keeping and

data management for Dedalus simulations.

base_simulator.py
"""Base class / variables for Dedalus simulations with good file management.

Author: Shane McQuarrie
"""

import os
import re
import json
import time
import logging
from glob import glob
from mpi4py import MPI

from dedalus.tools import post

Global variables ===

RANK = MPI.COMM_WORLD.rank # Which process this is running on
SIZE = MPI.COMM_WORLD.size # How many processes are running

Log file formatting
LOG_FORMAT = "(%(asctime)s, {:0>2}/{:0>2}) %(levelname)s: %(message)s".format(

RANK+1, SIZE)
LOG_FILE = "process{:0>2}.log".format(RANK)
logging.basicConfig(format=LOG_FORMAT)

Regex for finding data files
FILE_INDEX = re.compile(r"_s(\d+?)(?:_p\d)?\.h5$")

Parameter storage filename
PARAMS = "params.json"

Simulation Class ==

class BaseSimulator:
def __init__(self, records_dir=None, log=True):

"""Store variables for record keeping.

Parameters:
records_dir (str): the directory in which all simulation data

is stored or retrieved. If None (default), the directory is

63

http://dedalus-project.org/

www.manaraa.com

B2D__date_mm_dd_yyyy__time_hh_mm/, which depends on the day
and time of creation.

"""
self._name = type(self).__name__
if not records_dir: # Default: directory name by timestamp.

records_dir = self._name + time.strftime("__%m_%d_%Y__%H_%M")
records_dir = records_dir.strip(os.sep)
if os.path.isdir(records_dir): # Notify user if directory exists.

print("Connecting to existing directory {}".format(records_dir))
else: # Default: make new directory.

try:
os.mkdir(records_dir)
print("Created new directory {}".format(records_dir))

except FileExistsError: # Other process might create it first.
pass

Log information to a logfile in the records directory.
logger = logging.getLogger(records_dir + str(RANK))
logger.setLevel(logging.DEBUG)
if log and len(logger.handlers) == 0:

logfile = logging.FileHandler(os.path.join(records_dir, LOG_FILE))
logfile.setFormatter(logging.Formatter(LOG_FORMAT))
logfile.setLevel(logging.DEBUG)
logger.addHandler(logfile)

Store variables.
self.records_dir = records_dir
self.params_file = os.path.join(records_dir, PARAMS)
self.logger = logger
self.problem = None

If the parameter file already exists, load and print it.
if os.path.isfile(self.params_file) and RANK == 0:

self.logger.info("Previous simulation parameters:")
for key, value in self._load_params(self.records_dir).items():

self.logger.info("\t'{}': {}".format(key, value))

def setup(*args, **kwargs):
"""Define the dedalus problem (de.IVP, de.EVP, de.LBVP, or de.NLBVP),
including variables, substitutions, equations, and boundary conditions.

IMPORTANT: Save the dedalus problem object as 'self.problem'.
"""
raise NotImplementedError("setup() must be implemented in subclasses")

def simulate(*args, **kwargs):
"""Create a solver (self.problem.build_solver(scheme)), set initial
conditions on the problem (if appropriate), set up analyses, and run
the actual simulation.
"""
raise NotImplementedError("simulate() must be implemented in"

" subclasses")

def _save_params(self):
"""Save a dictionary of problem parameters to a readable JSON file.
If such a file already exists, compare the current problem parameters
to the old parameters, log any differences, and overwrite the file.
"""
if not self.problem:

raise NotImplementedError("Problem not initialized (call setup())")

def JSONish(x):
"""Return True if x is JSON serializable, False otherwise."""
try:

json.dumps(x)
return True

64

www.manaraa.com

except TypeError:
return False

params = {k:v for k,v in self.problem.parameters.items() if JSONish(v)}
self.logger.info("Writing parameters to '{}'".format(self.params_file))
for key, value in params.items():

self.logger.info("\t'{}': {}".format(key, value))

If there is already a params file, compare old and new parameters.
if os.path.isfile(self.params_file):

old_params = self._load_params(self.records_dir)
if old_params != params:

self.logger.info("Saved parameters updated")
old_keys, new_keys = set(old_params.keys()), set(params.keys())
Report missing or new parameter keys.
for key in old_keys - new_keys:

self.logger.info("\tOld param '{}' removed (was {})".format(
key, old_keys[key]))

for key in new_keys - old_keys:
self.logger.info("\tNew param '{}'".format(key))

Report changed parameters.
for key in old_keys & new_keys:

old, new = old_params[key], params[key]
if old != new:

self.logger.info("\tParam '{}' changed: {} -> {}".format(
key, old, new))

with open(self.params_file, 'w') as outfile:
json.dump(params, outfile)

@staticmethod
def _load_params(records_dir):

"""Load a dictionary of problem parameters from a given directory."""
Make sure the directory exists.
if not os.path.isdir(records_dir):

raise NotADirectoryError(records_dir)

Load the parameters.
with open(os.path.join(records_dir, PARAMS), 'r') as infile:

return json.load(infile)

@staticmethod
def _file_index(f):

"""Get the index of a dedalus h5 file. For example,
states_s1.h5 -> 1, analysis_s10.h5 -> 10, etc.
"""
out = FILE_INDEX.findall(f)
try:

return int(out[0])
except IndexError:

return -1

def get_files(self, label):
"""Return a sorted list of the merged h5 data files.

Parameters:
label (str): The name of the subdirectory containing merged .h5

files. For example, if label="states", there should be a folder
self.records_dir/states/ containing at least one .h5 file.

Raises:
NotADirectoryError: if the specified subdirectory does not exist.
FileNotFoundError: if the specified subdirectory exists but there

are no matching files.
"""
Check that the relevant folder exists.

65

www.manaraa.com

subdir = os.path.join(self.records_dir, label)
if not os.path.isdir(subdir):

raise NotADirectoryError(subdir)

Get the list of files.
out = sorted(glob(os.path.join(subdir, "*.h5")), key=self._file_index)
if len(out) == 0:

raise FileNotFoundError("no {} files found".format(label))

return out

def merge_results(self, label, full_merge=False, force=False):
"""Merge the different process result files together.

Parameters:
label (str): The name of the subdirectory containing folders where

each process computes results. For example, if label="states",
then self.records_dir/states/ should exist and contain at least
one subfolder named states_s1/ (or similar), which in turn
contains .h5 files from each process (states_s1_p0.h5, etc.).

full_merge (bool): If true, merge the process files AND merge
the resulting files into one large file. For example,
states_s1_p0.h5 and states_s1_p1.h5 are merged into
states_s1.h5 like usual, and then states_s1.h5 and states_s2.h5
are merged into one large states.h5.

force (bool): If true, merge the files even if there is an existing
merged file.

"""
Check that the relevant folder exists.
subdir = os.path.join(self.records_dir, label)
if not os.path.isdir(subdir):

raise NotADirectoryError(subdir)

Check for existing folders and missing files before merging.
work_todo = False
if full_merge:

work_todo = not os.path.isfile(os.path.join(subdir, label+".h5"))
else:

for d in os.listdir(subdir):
target = os.path.join(subdir, d)
if os.path.isdir(target) and not os.path.isfile(target+".h5"):

work_todo = True
break

if work_todo or force:
self.logger.info("Merging {} files...".format(label))
post.merge_process_files(subdir,cleanup=False,comm=MPI.COMM_WORLD)
if full_merge:

Wait for other processes to finish.
MPI.COMM_WORLD.Barrier()
Do the last merge.
set_paths = glob(os.path.join(subdir, label+"_s*.h5"))
post.merge_sets(os.path.join(subdir, label+".h5"),

set_paths, cleanup=True, comm=MPI.COMM_WORLD)
self.logger.info("\t{} files now {}merged".format(label,

"fully " if full_merge else ""))

def __str__(self):
"""String representation: the raw equations, boundary conditions, and
parameters of the dedalus problem object.
"""
if not self.problem:

return "Problem not initialized (call setup())"
out = self._name + " System\n\nEquations:\n\t"
out += "\n\t".join([q["raw_equation"] for q in self.problem.equations])
out += "\nBoundary Conditions:\n\t"
out += "\n\t".join([q["raw_equation"] for q in self.problem.bcs])

66

www.manaraa.com

out += "\nParameters:\n\t"
out += "\n\t".join("{}: {}".format(key,value)

for key,value in self.problem.parameters.items())
return out

def all_experiment_params():
"""Get a dictionary mapping foldername to parameter dictionaries, as given
by BaseSimulator._load_params().
"""
return {f: BaseSimulator._load_params(f) for f in os.listdir()

if os.path.isdir(f) and os.path.isfile(os.path.join(f, PARAMS))}

boussinesq2d.py. Defines simulation classes that inherit from BaseSimulator. These

subclasses define the data and assimilating equations (setup()), the projection opera-

tor PN (P_N()), and run the corresponding simulations (simulate()). They also include

methods for visualizing simulation results (plot_convergence(), animate_temperature(),

and so on). The only difference between the two simulation subclasses is that the first,

BoussinesqDataAssimilation2D, records norms like ‖(T̃ − T)(t)‖L(Ω) (for creating plots

like Figure 3.2), while the second, BoussinesqDataAssimilation2Dmovie, records the state

variables T , T̃ , and so on (for creating animations and plots like Figure 3.1).

boussinesq2d.py
"""Dedalus script for data assimilation in the Boussinesq equations.

Authors: Shane McQuarrie, Jared Whitehead
"""

import os
import re
import h5py
import time
import numpy as np
from scipy.integrate import simps
from matplotlib import pyplot as plt
from matplotlib.animation import writers as mplwriters
try:

from tqdm import tqdm
except ImportError:

print("Recommended: install tqdm (pip install tqdm)")
tqdm = lambda x: x

from dedalus import public as de
from dedalus.extras import flow_tools
from dedalus.core.operators import GeneralFunction

from base_simulator import BaseSimulator, RANK, SIZE

Simulation Classes ==

class BoussinesqDataAssimilation2D(BaseSimulator):
"""Manager for dedalus simulations of the 2D Boussinesq system.

67

www.manaraa.com

Let Psi = [0,L]x[0,1] with coordinates (x,z). Defining
u = [v, w] = [-psi_z, psi_x] and zeta = laplace(psi),
the Boussinesq equations can be written as follows.

Pr [Ra T_x + laplace(zeta)] - zeta_t = u.grad(zeta)
laplace(T) - T_t = u.grad(T)

subject to
u(z=0) = 0 = u(z=1)
T(z=0) = 1, T(z=1) = 0
u, T periodic in (x,y) (use a Fourier basis)

Variables:
u:R2xR -> R2: the fluid velocity vector field.
T:R2xR -> R: the fluid temperature.
p:R2xR -> R: the pressure.
Ra: the Rayleigh number.
Pr: the Prandtl number

If the Prandtl number is infinite, the first equations can be simplified.

- zeta_t = u.grad(zeta)
"""
@staticmethod
def P_N(F, N, scale=False):

"""Calculate the Fourier mode projection of F with N terms."""
Set the c_n to zero wherever n > N (in both axes).
X,Y = np.indices(F['c'].shape)
F['c'][(X >= N) | (Y >= N)] = 0

if scale:
F.set_scales(1)

return F['g']

def setup(self, L=4, xsize=256, zsize=128, Prandtl=None, Rayleigh=10000,
mu=1, N=32, BCs="no-slip"):

"""Set up the systems of equations as a dedalus Initial Value Problem,
without providing initial conditions yet.

Parameters:
L (float): the length of the x domain. In x and z, the domain is

therefore [0,L]x[0,1].
xsize (int): the number of points to discretize in the x direction.
zsize (int): the number of points to discretize in the z direction.
Prandtl (None or float): the ratio of momentum diffusivity to

thermal diffusivity of the fluid. If None (default), then
the system is set up as if Prandtl = infinity.

Rayleigh (float): measures the amount of heat transfer due to
convection, as opposed to conduction.

mu (float): constant on the Fourier projection in the
Data Assimilation system.

N (int): the number of modes to keep in the Fourier projection.
BCs (str): if 'no-slip', use the no-slip BCs u(z=0,1) = 0.

If 'free-slip', use the free-slip BCs u_z(z=0,1) = 0.
"""
Validate BCs parameter.
if BCs not in {"no-slip", "free-slip"}:

raise ValueError("'BCs' must be 'no-slip' or 'free-slip'")

Validate N parameter.
minsize = min(xsize, zsize)
if not 0 <= N <= minsize:

raise ValueError("0 <= N <= {} is required".format(minsize))

Bases and Domain --
x_basis = de.Fourier('x', xsize, interval=(0, L), dealias=3/2)

68

www.manaraa.com

z_basis = de.Chebyshev('z', zsize, interval=(0, 1), dealias=3/2)
domain = de.Domain([x_basis, z_basis], grid_dtype=np.float64)

Initialize the problem as an IVP and add variables ------------------
problem = de.IVP(domain, variables=['T', 'T_', # Temperature

'Tz', 'Tz_',
'psi', 'psi_', # Stream function
'psiz', 'psiz_',
'zeta', 'zeta_',# Laplace of stream
'zetaz', 'zetaz_'])

driving = GeneralFunction(domain, 'g',
BoussinesqDataAssimilation2D.P_N, args=[])

System parameters (these are saved to a JSON file).
problem.parameters['L'] = L # Domain parameters
problem.parameters['xsize'] = xsize
problem.parameters['zsize'] = zsize

problem.parameters['Ra'] = Rayleigh # Fluid parameters
if Prandtl:

problem.parameters['Pr'] = Prandtl

problem.parameters["N"] = N # Assimilation parameters
problem.parameters["mu"] = mu
problem.parameters["driving"] = driving

Stream function substitutions: u = [v, w] = [-psi_z, psi_w]
problem.substitutions['v'] = "-dz(psi)"
problem.substitutions['v_'] = "-dz(psi_)"
problem.substitutions['w'] = "dx(psi)"
problem.substitutions['w_'] = "dx(psi_)"

Relate higher-order z derivatives (b/c Chebyshev).
problem.add_equation("psiz - dz(psi) = 0")
problem.add_equation("psiz_ - dz(psi_) = 0")
problem.add_equation("zetaz - dz(zeta) = 0")
problem.add_equation("zetaz_ - dz(zeta_) = 0")
problem.add_equation("Tz - dz(T) = 0")
problem.add_equation("Tz_ - dz(T_) = 0")

zeta = laplace(psi)
problem.add_equation("zeta - dx(dx(psi)) - dz(psiz) = 0")
problem.add_equation("zeta_ - dx(dx(psi_)) - dz(psiz_) = 0")

2D Boussinesq Equations ---
if Prandtl is None: # Ra T_x + laplace(zeta) = 0

problem.add_equation("Ra*dx(T) + dx(dx(zeta)) + dz(zetaz) = 0")
problem.add_equation("Ra*dx(T_) + dx(dx(zeta_)) + dz(zetaz_) = 0")

else: # Pr(Ra T_x + laplace(zeta)) - zeta_t = u.grad(zeta)
problem.add_equation("Pr*(Ra*dx(T) + dx(dx(zeta)) + dz(zetaz))"

" - dt(zeta) = v*dx(zeta) + w*zetaz")
problem.add_equation("Pr*(Ra*dx(T_) + dx(dx(zeta_)) + dz(zetaz_))"

" - dt(zeta_) = v_*dx(zeta_) + w_*zetaz_")

T_t - laplace(T) = -u . grad(T) (+ driving Fourier projection)
problem.add_equation("dt(T) - dx(dx(T)) - dz(Tz) "

"= -v*dx(T) - w*Tz")
problem.add_equation("dt(T_) - dx(dx(T_)) - dz(Tz_) "

"= -v_*dx(T_) - w_*Tz_ - mu*driving")

Boundary Conditions ---
Temperature heating from 'left' (bottom), cooling from 'right' (top).
problem.add_bc("left(T) = 1") # T(z=0) = 1
problem.add_bc("left(T_) = 1")
problem.add_bc("right(T) = 0") # T(z=1) = 0

69

www.manaraa.com

problem.add_bc("right(T_) = 0")

Velocity field boundary conditions: no-slip or free-slip.
w(z=1) = w(z=0) = 0 (part of no-slip and free-slip)
problem.add_bc("left(psi) = 0")
problem.add_bc("left(psi_) = 0")
problem.add_bc("right(psi) = 0")
problem.add_bc("right(psi_) = 0")

if BCs == "no-slip":
u(z=0) = 0 --> v(z=0) = 0 = w(z=0)
problem.add_bc("left(psiz) = 0")
problem.add_bc("left(psiz_) = 0")

u(z=1) = 0 --> v(z=1) = 0 = w(z=1)
problem.add_bc("right(psiz) = 0")
problem.add_bc("right(psiz_) = 0")

elif BCs == "free-slip":
u'(z=0) = 0 --> v'(z=0) = 0 = w(z=0)
problem.add_bc("left(dz(psiz)) = 0")
problem.add_bc("left(dz(psiz_)) = 0")

u'(z=1) = 0 --> v'(z=1) = 0 = w(z=1)
problem.add_bc("right(dz(psiz)) = 0")
problem.add_bc("right(dz(psiz_)) = 0")

self.problem = problem
self.logger.info("Problem constructed")

Save system parameters in JSON format.
if RANK == 0:

self._save_params()

def simulate(self, initial_conditions=None, scheme=de.timesteppers.RK443,
sim_time=2, wall_time=np.inf, tight=False, save=.05,
analysis=True):

"""Load initial conditions, run the simulation, and merge results.

Parameters:
initial_conditions (None, str): determines from what source to

draw the initial conditions. Valid options are as follows:
- None: use trivial conditions (T_ = 1 - z, T = 1 - z + eps).
- 'resume': use the most recent state file in the

records directory (load both model and DA system).
- An .h5 filename: load state variables for the model and

reset the data assimilation state variables to zero.
scheme (de.timesteppers): The kind of solver to use. Options are

RK443 (de.timesteppers.RK443), RK111, RK222, RKSMR, etc.
sim_time (float): The maximum amount of simulation time allowed

(in seconds) before ending the simulation.
wall_time (float): The maximum amound of computing time allowed

(in seconds) before ending the simulation.
tight (bool): If True, set a low cadence and min_dt for refined

simulation. If False, set a higher cadence and min_dt for a
more coarse (but faster) simulation.

save (float): The number of simulation seconds that pass between
saving the state files. Higher save result in smaller data
files, but lower numbers result in better animations.
Set to 0 to disable saving state files.

analysis (bool): Whether or not to track convergence measurements.
Disable for faster simulations (less message passing via MPI)
when convergence estimates are not needed (i.e. movie only).

"""
if not self.problem:

raise TypeError("problem not initialized (run setup())")

70

www.manaraa.com

self.logger.debug("\n")
self.logger.debug("NEW SIMULATION")
solver = self.problem.build_solver(scheme)
self.logger.info("Solver built")

N = int(self.problem.parameters['N'])

Initial conditions --
if initial_conditions is None: # "Trivial" conditions.

eps = 1e-4
k = 3.117
dt = 1e-4

x,z = self.problem.domain.grids(scales=1)
T, T_ = solver.state['T'], solver.state['T_']
Start T from rest plus a small perturbation.
T['g'] = 1 - z + eps*np.sin(k*x)*np.sin(2*np.pi*z)
T.differentiate('z', out=solver.state['Tz'])
Start T_ from rest.
T_['g'] = 1 - z
T_.differentiate('z', out=solver.state['Tz_'])
self.logger.info("Using trivial initial conditions")

elif isinstance(initial_conditions, str): # Load data from a file.
Resume: load the state of the last (merged) state file.
resume = initial_conditions == "resume"
if resume:

initial_conditions = self._get_merged_file("states")
if not initial_conditions.endswith(".h5"):

raise ValueError("'{}' is not an h5 file".format(
initial_conditions))

Load the data from the specified h5 file into the system.
self.logger.info("Loading initial conditions from {}".format(

initial_conditions))

with h5py.File(initial_conditions, 'r') as infile:
dt = infile["scales/timestep"][-1] * .01 # initial dt
errs = []
tasks = ["T", "Tz", "psi", "psiz", "zeta", "zetaz"]
if resume: # Only load assimilating variables to resume.

tasks += ["T_", "Tz_", "psi_", "psiz_", "zeta_", "zetaz_"]
solver.sim_time = infile["scales/sim_time"][-1]
niters = infile["scales/iteration"][-1]
solver.initial_iteration = niters
solver.iteration = niters

for name in tasks:
Get task data from the h5 file (recording failures).
try:

data = infile["tasks/"+name][-1,:,:]
except KeyError as e:

errs.append("tasks/"+name)
continue

Determine the chunk belonging to this process.
chunk = data.shape[1] // SIZE
subset = data[:,RANK*chunk:(RANK+1)*chunk]
Change the corresponding state variable.
scale = solver.state[name]['g'].shape[0] / \

self.problem.parameters["xsize"]
solver.state[name].set_scales(1)
solver.state[name]['g'] = subset
solver.state[name].set_scales(scale)

if errs:
raise KeyError("Missing keys in '{}': '{}'".format(

initial_conditions, "', '".join(errs)))
Initial conditions for assimilating system: T_0 = P_4(T0).

71

www.manaraa.com

if not resume:
G = self.problem.domain.new_field()
G['c'] = solver.state['T']['c'].copy()
solver.state['T_']['g'] = BoussinesqDataAssimilation2D.P_N(

G, 4, True)
solver.state['T_'].differentiate('z', out=solver.state['Tz_'])

Driving / projection function arguments -----------------------------

dT = solver.state['T_'] - solver.state['T']
self.problem.parameters["driving"].args = [dT, N]
self.problem.parameters["driving"].original_args = [dT, N]

Stopping Parameters ---

solver.stop_sim_time = sim_time # Length of simulation.
solver.stop_wall_time = wall_time # Real time allowed to compute.
solver.stop_iteration = np.inf # Maximum iterations allowed.

State snapshots ---
if save:

Save the temperature measurements in states/ files. Use sim_dt.
snaps = solver.evaluator.add_file_handler(

os.path.join(self.records_dir, "states"),
sim_dt=save, max_writes=5000,mode="append")
Set save=0.005 or lower for more writes.

snaps.add_task("T")
snaps.add_task("T_")
snaps.add_task("driving", name="P_N")

Convergence analysis --
if analysis:

Save specific tasks in analysis/ files every few iterations.
annals = solver.evaluator.add_file_handler(

os.path.join(self.records_dir, "analysis"),
iter=20, max_writes=73600, mode="append")

Nusselt Number measurements - - - - - - - - - - - - - - - - - - -
1 + int(wT)/L
annals.add_task("1 + integ(w *T , 'x','z')/L", name="Nu_1")
annals.add_task("1 + integ(w_*T_, 'x','z')/L", name="Nu_1_da")
int(grad(T)^2)/L
annals.add_task("integ(dx(T)**2 + Tz **2, 'x','z')/L",

name="Nu_2")
annals.add_task("integ(dx(T_)**2 + Tz_**2, 'x','z')/L",

name="Nu_2_da")
1 + int(grad(u)^2)/(Ra L)
annals.add_task("1 + "

"integ(dx(v)**2 + dz(v)**2 + dx(w)**2 + dz(w)**2,'x','z')"
"/(Ra*L)", name="Nu_3")

annals.add_task("1 + "
"integ(dx(v_)**2 + dz(v_)**2 + dx(w_)**2 + dz(w_)**2,'x','z')"

"/(Ra*L)", name="Nu_3_da")

Convergence estimates -
||T - T_||_2
annals.add_task("sqrt(integ((T - T_)**2, 'x','z')"

"/integ(T**2, 'x', 'z'))", name="T_err")
||grad(T) - grad(T_)||_2
Could use dz(T-T_) or dz(T)-dz(T_) or Tz-Tz_
annals.add_task("sqrt(integ(dx(T-T_)**2 + dz(T-T_)**2, 'x','z')"

"/integ(dx(T)**2 + dz(T)**2, 'x','z'))",
name="gradT_err")

||u - u_||_2
annals.add_task("sqrt(integ((v-v_)**2 + (w-w_)**2, 'x','z')"

"/integ(v**2 + w**2, 'x','z'))",

72

www.manaraa.com

name="u_err")
||grad(u - u_)||_2
annals.add_task("sqrt(integ(dx(v-v_)**2 + dz(v-v_)**2"

" + dx(w-w_)**2 + dz(w-w_)**2, 'x','z')"
"/integ(dx(v)**2 + dz(v)**2"

" + dx(w)**2 + dz(w)**2, 'x','z'))",
name="gradu_err")

||T - T_||_H2
annals.add_task("sqrt(integ(dx(dx(T-T_))**2 + dx(dz(T-T_))**2 "

"+ dz(dz(T-T_))**2, 'x','z')"
"/integ(dx(dx(T))**2 + dx(dz(T))**2 "

"+ dz(dz(T))**2, 'x','z'))",
name="T_h2_err")

||u - u_||_H2
annals.add_task("sqrt("

"integ(dx(dx(v-v_))**2 + dz(dz(v-v_))**2"
" + dx(dz(v-v_))**2 + dx(dz(w-w_))**2"
" + dx(dx(w-w_))**2 + dz(dz(w-w_))**2, 'x','z')"

"/integ(dx(dx(v))**2 + dz(dz(v))**2"
" + dx(dz(v))**2 + dx(dz(w))**2"
" + dx(dx(w))**2 + dz(dz(w))**2, 'x','z'))",

name="u_h2_err")

Control Flow --
if tight: # Tighter control flow (slower but safer).

cfl = flow_tools.CFL(solver, initial_dt=dt, cadence=1, safety=1,
max_change=1.5, min_change=0.01,
max_dt=0.01, min_dt=1e-10)

else: # Looser control flow (faster but risky).
cfl = flow_tools.CFL(solver, initial_dt=dt, cadence=10, safety=1,

max_change=1.5, min_change=0.5,
max_dt=0.01, min_dt=1e-6)

cfl.add_velocities(('v', 'w'))
cfl.add_velocities(('v_', 'w_'))

Flow properties (print during run; not recorded in the records files)
flow = flow_tools.GlobalFlowProperty(solver, cadence=1)
flow.add_property("sqrt(v **2 + w **2) / Ra", name='Re')
flow.add_property("sqrt(v_**2 + w_**2) / Ra", name='Re_')

MAIN COMPUTATION LOOP ---
try:

self.logger.info("Starting main loop")
start_time = time.time()
while solver.ok:

Recompute time step and iterate.
dt = cfl.compute_dt()
dt = solver.step(dt) #, trim=True)

Print info to the screen every 10 iterations.
if solver.iteration % 10 == 0:

info = "Iteration {:>5d}, Time: {:.7f}, dt: {:.2e}".format(
solver.iteration, solver.sim_time, dt)

Re = flow.max("Re")
Re_ = flow.max("Re_")
info += ", Max Re = {:f}".format(Re)
info += ", Max Re_ = {:f}".format(Re_)
self.logger.info(info)
Make sure the simulation hasn't blown up.
if np.isnan(Re) or np.isnan(Re_):

raise ValueError("Reynolds number went to infinity!!"
"\nRe = {}, Re_ = {}".format(Re, Re_))

except BaseException as e:
self.logger.error("Exception raised, triggering end of main loop.")
raise

finally:

73

www.manaraa.com

total_time = time.time() - start_time
cpu_hr = total_time / 60 / 60 * SIZE
self.logger.info("Iterations: {:d}".format(solver.iteration))
self.logger.info("Sim end time: {:.3e}".format(solver.sim_time))
self.logger.info("Run time: {:.3e} sec".format(total_time))
self.logger.info("Run time: {:.3e} cpu-hr".format(cpu_hr))
self.logger.debug("END OF SIMULATION\n")

def _get_merged_file(self, label):
"""Return the name of the oldest merged (full or partial) h5 file with
the specified label.
"""
if label not in {"states", "analysis"}:

raise ValueError("label must be 'states' or 'analysis'")
out = self.get_files(label)
if out[0].endswith("{}.h5".format(label)):

return out[0]
return out[-1]

@staticmethod
def _get_fully_merged_state_file(records_dir):

"""Return the name of the fully merged h5 state file, without doing
any file merges if the file does not exist.

Parameters:
records_dir (str): The base folder containing the simulation files.

Raises:
NotADirectoryError: if the states/ subdirectory does not exist.
FileNotFoundError: if the states/states.h5 file does not exist.

"""
subdir = os.path.join(records_dir, "states")
if not os.path.isdir(subdir):

raise NotADirectoryError(subdir)

target = os.path.join(records_dir, "states", "states.h5")
if not os.path.isfile(target):

raise FileNotFoundError(target)

return target

def merge_results(self, force=False):
"""Merge the different process state and analysis files together."""
for label in ["analysis", "states"]:

Check that the folder exists and is nonempty.
folder = os.path.join(self.records_dir, label)
if os.path.isdir(folder) and os.listdir(folder):

Call the parent merge function.
BaseSimulator.merge_results(self, label, True, force=force)

else:
Inform the user that merge files were not found.
self.logger.info("No {} files to merge".format(label))

def plot_convergence(self, savefig=True):
"""Plot the six measures of convergence over time."""
self.merge_results()
datafile = self._get_merged_file("analysis")
self.logger.info("Plotting convergence estimates from '{}'...".format(

datafile))
Gather data from the source file.
with h5py.File(datafile, 'r') as data:

times = list(data["scales/sim_time"])
T_err = data["tasks/T_err"][:,0,0]
gradT_err = data["tasks/gradT_err"][:,0,0]
u_err = data["tasks/u_err"][:,0,0]
gradu_err = data["tasks/gradu_err"][:,0,0]

74

www.manaraa.com

T_h2_err = data["tasks/T_h2_err"][:,0,0]
u_h2_err = data["tasks/u_h2_err"][:,0,0]

with plt.style.context(".mplstyle"):
Make subplots and a big plot for an overlay.
fig = plt.figure(figsize=(12,6))
ax1 = plt.subplot2grid((3,4), (0,0))
ax2 = plt.subplot2grid((3,4), (0,1))
ax3 = plt.subplot2grid((3,4), (1,0))
ax4 = plt.subplot2grid((3,4), (1,1))
ax5 = plt.subplot2grid((3,4), (2,0))
ax6 = plt.subplot2grid((3,4), (2,1))
axbig = plt.subplot2grid((3,4), (0,2), rowspan=3, colspan=2)

Plot the data.
ax1.semilogy(times, T_err, 'C0', lw=.5)
ax2.semilogy(times, u_err, 'C1', lw=.5)
ax3.semilogy(times, gradT_err, 'C2', lw=.5)
ax4.semilogy(times, gradu_err, 'C3', lw=.5)
ax5.semilogy(times, T_h2_err, 'C4', lw=.5)
ax6.semilogy(times, u_h2_err, 'C5', lw=.5)
axbig.semilogy(times, T_err, 'C0', lw=.5,

label=r"$||(\tilde{T} - T)(t)||_{L^2(\Omega)}$")
axbig.semilogy(times, u_err, 'C1', lw=.5,

label=r"$||(\tilde{\mathbf{u}} - \mathbf{u})(t)||"
r"_{L^2(\Omega)}$")

axbig.semilogy(times, gradT_err, 'C2', lw=.5,
label=r"$||(\nabla\tilde{T} - \nabla T)(t)||"

r"_{L^2(\Omega)}$")
axbig.semilogy(times, gradu_err, 'C3', lw=.5,

label=r"$||(\nabla\tilde{\mathbf{u}} - \nabla"
r"\mathbf{u})(t)||_{L^2(\Omega)}$")

axbig.semilogy(times, T_h2_err, 'C4', lw=.5,
label=r"$||(\tilde{T} - T)(t)||_{H^2(\Omega)}$")

axbig.semilogy(times, u_h2_err, 'C5', lw=.5,
label=r"$||(\tilde{\mathbf{u}} - \mathbf{u})(t)||"

r"_{H^2(\Omega)}$")
axbig.legend(loc="upper right")

Set minimal axis and tick labels.
for ax in [ax1, ax2, ax3, ax4]:

ax.set_xticklabels([])
for ax in [ax2, ax4, ax6]:

ax.set_yticklabels([])
ax5.set_xlabel("Simulation Time", color="white")
ax6.set_xlabel("Simulation Time", color="white")
axbig.set_xlabel("Simulation Time", color="white")
fig.text(0.5, 0.01, r"Simulation Time t", ha="center",

fontsize=16)
ax1.set_title(r"$||(\tilde{T} - T)(t)||_{L^2(\Omega)}$")
ax2.set_title(r"$||(\tilde{\mathbf{u}} - \mathbf{u})(t)||"

r"_{L^2(\Omega)}$")
ax3.set_title(r"$||(\nabla\tilde{T} - \nabla T)(t)||"

r"_{L^2(\Omega)}$")
ax4.set_title(r"$||(\nabla\tilde{\mathbf{u}} - \nabla"

r"\mathbf{u})(t)||_{L^2(\Omega)}$")
ax5.set_title(r"$||(\tilde{T} - T)(t)||_{H^2(\Omega)}$")
ax6.set_title(r"$||(\tilde{\mathbf{u}} - \mathbf{u})(t)||"

r"_{H^2(\Omega)}$")
axbig.set_title("Overlay")

Make the axes uniform and use tight spacing.
xlims = axbig.get_xlim()
for ax in [ax1, ax2, ax3, ax4, ax5, ax6, axbig]:

ax.set_xlim(xlims)
ax.set_ylim(1e-11, 1e1)

75

www.manaraa.com

plt.tight_layout()

Save or show the figure.
if savefig:

outfile = os.path.join(self.records_dir, "convergence.pdf")
plt.savefig(outfile, dpi=300, bbox_inches="tight")
self.logger.info("\tFigure saved as '{}'".format(outfile))

else:
plt.show()

plt.close()

def plot_nusselt(self, savefig=True):
"""Plot the three measures of the Nusselt number over time for the
base and DA systems.
"""
self.merge_results()
datafile = self._get_merged_file("analysis")
self.logger.info("Plotting Nusselt number from '{}'...".format(

datafile))
Gather data from the source file.
times = []
nusselt = [[] for _ in range(6)]
with h5py.File(datafile, 'r') as data:

times = list(data["scales/sim_time"])
for i in range(1,4):

label = "tasks/Nu_{}".format(i)
nusselt[i-1] = data[label][:,0,0]
nusselt[i+2] = data[label+"_da"][:,0,0]

t, nusselt = np.array(times), np.array(nusselt)

Calculate time averages (integrate using Simpson's rule).
nuss_avg = np.array([[simps(nu[:n], t[:n]) for n in range(1,len(t)+1)]

for nu in nusselt])
nuss_avg[:,1:] /= t[1:]

with plt.style.context(".mplstyle"):
Plot results in 4 subplots (raw nusselt vs time avg, nonDA vs DA)
fig = plt.figure(figsize=(12,6))
ax1 = plt.subplot2grid((2,4), (0,0))
ax2 = plt.subplot2grid((2,4), (0,1), sharey=ax1)
ax3 = plt.subplot2grid((2,4), (1,0))
ax4 = plt.subplot2grid((2,4), (1,1), sharey=ax3)
axbig = plt.subplot2grid((2,4), (0,2), rowspan=2, colspan=2)
for i in [0,1,2]:

ax1.plot(t[1:], nusselt[i,1:])
ax3.plot(t[1:], nuss_avg[i,1:])
ax2.plot(t[1:], nusselt[i+3,1:])
ax4.plot(t[1:], nuss_avg[i+3,1:])

axbig.plot(t[1:], nuss_avg[:3,1:].mean(axis=0),
label='Data ("Truth")')

axbig.plot(t[1:], nuss_avg[3:,1:].mean(axis=0),
label="Assimilating System")

ax1.set_title("Raw Nusselt", fontsize=8)
ax3.set_title("Time Average", fontsize=8)
ax2.set_title("DA Raw Nusselt", fontsize=8)
ax4.set_title("DA Time Average", fontsize=8)
axbig.set_title("Overlay of Mean Time Averages", fontsize=8)
axbig.legend(loc="lower right")
plt.tight_layout()

if savefig:
outfile = os.path.join(self.records_dir, "nusselt.pdf")
plt.savefig(outfile, dpi=300, bbox_inches="tight")
self.logger.info("\tFigure saved as '{}'".format(outfile))

else:
plt.show()

76

www.manaraa.com

plt.close()

def animate_temperature(self, max_frames=np.inf):
"""Animate the temperature results of the simulation (model and DA
system) and save it to an mp4 file called 'temperature.mp4'.
"""
self.merge_results()
state_file = self._get_merged_file("states")
self.logger.info("Creating temperature animation from '{}'...".format(

state_file))

Set up the figure / movie writer.
fig = plt.figure(figsize=(12,6))
ax1 = plt.subplot2grid((2,2), (0,0))
ax2 = plt.subplot2grid((2,2), (0,1))
ax4 = plt.subplot2grid((2,2), (1,0), colspan=2)
fig, [[ax1, ax3], [ax2, ax4]] = plt.subplots(2, 2)
ax1.axis("off"); ax2.axis("off") #; ax3.axis("off")
ax1.set_title('Data ("Truth")')
ax2.set_title("Assimilating System")
ax3.set_title("Projected Temperature Difference", fontsize=8)
writer = mplwriters["ffmpeg"](fps=250) # frames per second, sets speed.

Rename the old animation if it exists (it will be deleted later).
outfile = os.path.join(self.records_dir, "temperature.mp4")
oldfile = os.path.join(self.records_dir, "old_temperature.mp4")
if os.path.isfile(outfile):

self.logger.info("\tRenaming old animation '{}' -> '{}'".format(
outfile, oldfile))

os.rename(outfile, oldfile)

Write the movie at 200 DPI (resolution).
with writer.saving(fig,outfile,200), h5py.File(state_file,'r') as data:

print("Extracting data...", end='', flush=True)
T = data["tasks/T"]
T_ = data["tasks/T_"]
dT = data["tasks/P_N"]
times = list(data["scales/sim_time"])
assert len(times) == len(T) == len(T_), "mismatched dimensions"
print("done")

Plot ||T_ - T||_L^infinity.
print("Calculating / plotting ||T_ - T||_L^infty(Omega)...",

end='', flush=True)
L_inf = np.max(np.abs(T_[:] - T[:]), axis=(1,2))
ax4.semilogy(times, L_inf, lw=1)
ax4_line = plt.axvline(x=times[0], color='r', lw=.5)
_, ylims = ax4_line.get_data()
ax4.set_xlim(times[0], times[-1])
ax4.set_ylim(1e-11, 1e1)
ax4.set_title(r"$||\tilde{T} - T||_{L^\infty(\Omega)} =$" \

+ "{:.2e}".format(L_inf[0]))
ax4.spines["right"].set_visible(False)
ax4.spines["top"].set_visible(False)
ax4.set_xlabel(r"Simulation Time t")
print("done")

Set up color maps for each temperature layer.
im1 = ax1.imshow(T[0].T, animated=True, cmap="inferno",

vmin=0, vmax=1)
im2 = ax2.imshow(T_[0].T, animated=True, cmap="inferno",

vmin=0, vmax=1)
im3 = ax3.imshow(dT[0].T, animated=True, cmap="RdBu_r",
vmin=-.05, vmax=.05)

norm=SymLogNorm(linthresh=1e-10, vmin=-1, vmax=1))
im3 = ax3.imshow(np.log(np.abs(T[0] - T_[0]) + 1e-16).T,

77

www.manaraa.com

animated=True, cmap="viridis") # log difference
fig.colorbar(im3, ax=ax3, fraction=0.023)
ax1.invert_yaxis() # Flip the images right-side up.
ax2.invert_yaxis()
ax3.invert_yaxis()

Save a frame for each layer of task data.
for j in tqdm(range(min(T.shape[0], max_frames))):

im1.set_array(T[j].T) # Truth
im2.set_array(T_[j].T) # Approximation
im3.set_array(dT[j].T) # Difference
im3.set_array(np.log(np.abs(T[j] - T_[j]) + 1e-16).T)

Moving line for ||T - T_||_L^infty error plot.
t = times[j]
ax4_line.set_data([[t,t], ylims])
ax4.set_title(r"$||(\tilde{T}-T)(t)||_{L^\infty(\Omega)} =$" \

+ "{:.2e}".format(L_inf[j]))
writer.grab_frame()

self.logger.info("\tAnimation saved as '{}'".format(outfile))
plt.close()

Delete the old animation.
if os.path.isfile(oldfile):

self.logger.info("\tDeleting old animation '{}'".format(oldfile))
os.remove(oldfile)

def process_results(self):
"""Call all post-processing methods."""
self.merge_results()
if RANK == 0:

self.plot_convergence()
self.plot_nusselt()
self.animate_temperature()

class BoussinesqDataAssimilation2Dmovie(BoussinesqDataAssimilation2D):
"""Same as BoussinesqDataAssimilation2D, but simulate() never saves
analysis files and always saves the temperature fields at every iteration.
"""
def simulate(self, initial_conditions=None, scheme=de.timesteppers.RK443,

sim_time=2, wall_time=np.inf, tight=False):
"""Load initial conditions, run the simulation, and merge results.

Parameters:
initial_conditions (None, str): determines from what source to

draw the initial conditions. Valid options are as follows:
- None: use trivial conditions (T_ = 1 - z, T = 1 - z + eps).
- 'resume': use the most recent state file in the

records directory (load both model and DA system).
- An .h5 filename: load state variables for the model and

reset the data assimilation state variables to zero.
scheme (de.timesteppers): The kind of solver to use. Options are

RK443 (de.timesteppers.RK443), RK111, RK222, RKSMR, etc.
sim_time (float): The maximum amount of simulation time allowed

(in seconds) before ending the simulation.
wall_time (float): The maximum amound of computing time allowed

(in seconds) before ending the simulation.
tight (bool): If True, set a low cadence and min_dt for refined

simulation. If False, set a higher cadence and min_dt for a
more coarse (but faster) simulation.

"""
if not self.problem:

raise TypeError("problem not initialized (run setup())")

self.logger.debug("\n")

78

www.manaraa.com

self.logger.debug("NEW SIMULATION")
solver = self.problem.build_solver(scheme)
self.logger.info("Solver built")

N = int(self.problem.parameters['N'])

Initial conditions --
if initial_conditions is None: # "Trivial" conditions.

dt = 1e-4
eps = 1e-4
k = 3.117

x,z = self.problem.domain.grids(scales=1)
T, T_ = solver.state['T'], solver.state['T_']
Start T from rest plus a small perturbation.
T['g'] = 1 - z + eps*np.sin(k*x)*np.sin(2*np.pi*z)
T.differentiate('z', out=solver.state['Tz'])
Start T_ from rest.
T_['g'] = 1 - z
T_.differentiate('z', out=solver.state['Tz_'])
self.logger.info("Using trivial initial conditions")

elif isinstance(initial_conditions, str): # Load data from a file.
Resume: load the state of the last (merged) state file.
resume = initial_conditions == "resume"
if resume:

initial_conditions = self._get_merged_file("states")
if not initial_conditions.endswith(".h5"):

raise ValueError("'{}' is not an h5 file".format(
initial_conditions))

Load the data from the specified h5 file into the system.
self.logger.info("Loading initial conditions from {}".format(

initial_conditions))

with h5py.File(initial_conditions, 'r') as infile:
dt = infile["scales/timestep"][-1] * .01 # initial dt
errs = []
tasks = ["T", "Tz", "psi", "psiz", "zeta", "zetaz"]
if resume: # Only load assimilating variables to resume.

tasks += ["T_", "Tz_", "psi_", "psiz_", "zeta_", "zetaz_"]
solver.sim_time = infile["scales/sim_time"][-1]
niters = infile["scales/iteration"][-1]
solver.initial_iteration = niters
solver.iteration = niters

for name in tasks:
Get task data from the h5 file (recording failures).
try:

data = infile["tasks/"+name][-1,:,:]
except KeyError as e:

errs.append("tasks/"+name)
continue

Determine the chunk belonging to this process.
chunk = data.shape[1] // SIZE
subset = data[:,RANK*chunk:(RANK+1)*chunk]
Change the corresponding state variable.
scale = solver.state[name]['g'].shape[0] / \

self.problem.parameters["xsize"]
solver.state[name].set_scales(1)
solver.state[name]['g'] = subset
solver.state[name].set_scales(scale)

if errs:
raise KeyError("Missing keys in '{}': '{}'".format(

initial_conditions, "', '".join(errs)))
Initial conditions for assimilating system: T_0 = P_4(T0).
if not resume:

G = self.problem.domain.new_field()

79

www.manaraa.com

G['c'] = solver.state['T']['c'].copy()
solver.state['T_']['g'] = BoussinesqDataAssimilation2D.P_N(

G, 4, True)
solver.state['T_'].differentiate('z', out=solver.state['Tz_'])

Driving / projection function arguments -----------------------------

dT = solver.state['T_'] - solver.state['T']
self.problem.parameters["driving"].args = [dT, N]
self.problem.parameters["driving"].original_args = [dT, N]

Stopping Parameters ---

solver.stop_sim_time = sim_time # Length of simulation.
solver.stop_wall_time = wall_time # Real time allowed to compute.
solver.stop_iteration = np.inf # Maximum iterations allowed.

State snapshots ---

Save the entire state in states/ files. USE iter, NOT sim_dt.
NOTE: This is where BoussinesqDataAssimilation2Dmovie differs.
snaps = solver.evaluator.add_file_handler(

os.path.join(self.records_dir, "states"),
iter=1, max_writes=5000, mode="append")

snaps.add_task("T")
snaps.add_task("T_")
snaps.add_task("driving", name="P_N")

Control Flow --
if tight: # Tighter control flow (slower but safer).

cfl = flow_tools.CFL(solver, initial_dt=dt, cadence=1, safety=1,
max_change=1.5, min_change=0.01,
max_dt=0.01, min_dt=1e-10)

else: # Looser control flow (faster but risky).
cfl = flow_tools.CFL(solver, initial_dt=dt, cadence=10, safety=1,

max_change=1.5, min_change=0.5,
max_dt=0.01, min_dt=1e-6)

cfl.add_velocities(('v', 'w'))
cfl.add_velocities(('v_', 'w_'))

Flow properties (print during run; not recorded in the records files)
flow = flow_tools.GlobalFlowProperty(solver, cadence=1)
flow.add_property("sqrt(v **2 + w **2) / Ra", name='Re')
flow.add_property("sqrt(v_**2 + w_**2) / Ra", name='Re_')

MAIN COMPUTATION LOOP ---
try:

self.logger.info("Starting main loop")
start_time = time.time()
while solver.ok:

Recompute time step and iterate.
dt = cfl.compute_dt()
dt = solver.step(dt)

Print info to the screen every 10 iterations.
if solver.iteration % 10 == 0:

info = "Iteration {:>5d}, Time: {:.7f}, dt: {:.2e}".format(
solver.iteration, solver.sim_time, dt)

Re = flow.max("Re")
Re_ = flow.max("Re_")
info += ", Max Re = {:f}".format(Re)
info += ", Max Re_ = {:f}".format(Re_)
self.logger.info(info)
Make sure the simulation hasn't blown up.
if np.isnan(Re) or np.isnan(Re_):

raise ValueError("Reynolds number went to infinity!!"

80

www.manaraa.com

"\nRe = {}, Re_ = {}".format(Re, Re_))
except BaseException as e:

self.logger.error("Exception raised, triggering end of main loop.")
raise

finally:
total_time = time.time() - start_time
cpu_hr = total_time / 60 / 60 * SIZE
self.logger.info("Iterations: {:d}".format(solver.iteration))
self.logger.info("Sim end time: {:.3e}".format(solver.sim_time))
self.logger.info("Run time: {:.3e} sec".format(total_time))
self.logger.info("Run time: {:.3e} cpu-hr".format(cpu_hr))
self.logger.debug("END OF SIMULATION\n")

data assimilation.py. Parses command line arguments and runs the corresponding sim-

ulation. This is the main file that the user runs to do numerical experiments.

data_assimilation.py
"""Class-based Dedalus script on Data Assimilation for Mantle Convection.

usage: data_assimilation.py -h
data_assimilation.py --test
data_assimilation.py --main [-Ra RAYLEIGH] [-Pr PRANDTL] [-N N]

[-m MU] [-t TIME] [-init INITIAL] [-s SAVE]
[--tight] [--no-anlaysis]

data_assimilation.py --main --movie [-Ra RAYLEIGH] [-Pr PRANDTL] [-N N]
[-m MU] [-t TIME] [-init INITIAL] [--tight]

Run a Rayleigh-Benard convection simulation in 2D using the Boussinesq
equations; assimilate the data from that system into another system that
starts from a Fourier projection of the initial data.

optional arguments:
-h, --help show this help message and exit
--main run a full simulation with specified parameters
--test run a short test with default parameters
-Ra RAYLEIGH, --Rayleigh RAYLEIGH

Rayleigh number (conduction vs convection)
-Pr PRANDTL, --Prandtl PRANDTL

Prandtl number (viscous vs thermal diffusion)
-N N, --N N number of Fourier/Chebyshev projection modes
-m MU, --mu MU relaxation parameter for projection coupling
-t TIME, --time TIME simulation time
-init INITIAL, --initial INITIAL

data file to use as initial conditions
-s SAVE, --save SAVE interval at which to save the simulation state
--tight simulate with smaller time steps than usual
--no-analysis simulate without convergence measurements
--movie indicate that this is a movie-making experiment

Author: Shane McQuarrie
"""

import argparse
import numpy as np

from boussinesq2d import (BoussinesqDataAssimilation2D,
BoussinesqDataAssimilation2Dmovie)

Global variables --

81

www.manaraa.com

DEFAULT_N = 32
DEFAULT_MU = 20000
TEST_DIR = "__TEST__"

Folder management tools ---

def folder_name(Rayleigh, mu=None, N=None, Prandtl=None, movie=False):
"""Get the name of the folder for the specified simulation parameters."""
Always label with Rayleigh number.
label = "RA_{:0>10}".format(Rayleigh)

Label by mu, N, Prandlt, and movie next.
if N and N != DEFAULT_N:

label += "_N_{:0>2}".format(N)
if mu and mu != DEFAULT_MU:

label += "_{:0>6}".format(mu)
if Prandtl:

label += "_PR_{:0>3}".format(Prandtl)
if movie:

label += "_movie"

return label

Command line argument parser --

parser = argparse.ArgumentParser(description="Run a Rayleigh-Benard "
"convection simulation in 2D using the Boussinesq equations; "
"assimilate the data from that system into another system "
"that starts from a Fourier projection of the initial data.")

parser.usage = """data_assimilation.py -h
data_assimilation.py --test
data_assimilation.py --main [-Ra RAYLEIGH] [-Pr PRANDTL] [-N N]

[-m MU] [-t TIME] [-init INITIAL] [-s SAVE]
[--tight] [--no-anlaysis]

data_assimilation.py --main --movie [-Ra RAYLEIGH] [-Pr PRANDTL] [-N N]
[-m MU] [-t TIME] [-init INITIAL] [--tight]

"""

Mutually exclusive group: --main and --test
group1 = parser.add_mutually_exclusive_group()
group1.add_argument("--main", action="store_true",

help="run a full simulation with specified parameters")
group1.add_argument("--test", action="store_true",

help="run a short test with default parameters")

parser.add_argument("-Ra", "--Rayleigh", type=int, default=10000,
help="Rayleigh number (conduction vs convection)")

parser.add_argument("-Pr", "--Prandtl", type=int,
help="Prandtl number (viscous vs thermal diffusion)")

parser.add_argument("-N", "--N", type=int, default=DEFAULT_N,
help="number of Fourier/Chebyshev projection modes")

parser.add_argument("-m", "--mu", type=int, default=DEFAULT_MU,
help="relaxation parameter for projection coupling")

parser.add_argument("-t", "--time", type=float, default=1.0,
help="simulation time")

parser.add_argument("-init", "--initial",
help="data file to use as initial conditions")

Mutually exclusive group: --movie and --save
group2 = parser.add_mutually_exclusive_group()
group2.add_argument("-s", "--save", type=float, default=.05,

help="interval at which to save the simulation state")
parser.add_argument("--tight", action="store_true",

help="simulate with smaller time steps than usual")
parser.add_argument("--no-analysis", action="store_true", default=False,

help="simulate without convergence measurements")

82

www.manaraa.com

group2.add_argument("--movie", action="store_true", default=False,
help="indicate that this is a movie-making experiment")

Main Routine ==

if __name__ == "__main__":
args = parser.parse_args()

Run a full simulation ---
if args.main:

label = folder_name(args.Rayleigh, args.mu,
args.N, args.Prandtl, args.movie)

if args.movie:
b2d = BoussinesqDataAssimilation2Dmovie(label)
b2d.setup(Rayleigh=args.Rayleigh, mu=args.mu, N=args.N,

Prandtl=args.Prandtl)
b2d.simulate(initial_conditions=args.initial,

sim_time=args.time, tight=args.tight)
else:

b2d = BoussinesqDataAssimilation2D(label)
b2d.setup(Rayleigh=args.Rayleigh, mu=args.mu, N=args.N,

Prandtl=args.Prandtl)
b2d.simulate(initial_conditions=args.initial,

sim_time=args.time, tight=args.tight,
save=args.save, analysis=not args.no_analysis)

Run a short test with default parameters --------------------------------
elif args.test:

b2d = BoussinesqDataAssimilation2D(TEST_DIR)
b2d.setup(N=8)
try:

b2d.simulate(initial_conditions="default.h5", sim_time=.1501,
save=.0001)

except KeyboardInterrupt:
pass

b2d.process_results()

merge.py. Parses command line arguments and merges the data generated by a completed

experiment. This script also triggers visualization routines for the data.

merge.py
"""Merge existing analysis and state files for a single simulation directory.

usage: merge.py -h
merge.py -d DIRECTORY
merge.py -Ra RAYLEIGH [-m MU] [-Pr PRANDTL] [-N N] [--movie]

optional arguments:
-h, --help show this help message and exit
-d DIRECTORY, --directory DIRECTORY

folder containing simulation files to merge
-Ra RAYLEIGH, --Rayleigh RAYLEIGH

Rayleigh number (conduction vs convection)
-m MU, --mu MU relaxation parameter for projection coupling
-Pr PRANDTL, --Prandtl PRANDTL

Prandtl number (viscous vs thermal diffusion)
-N N, --N N number of Fourier/Chebyshev projection modes
--movie indicate that this is a movie-making experiment

"""

83

www.manaraa.com

import os
import argparse

from boussinesq2d import BoussinesqDataAssimilation2D
from data_assimilation import folder_name
from base_simulator import RANK

Parse command line arguments --

parser = argparse.ArgumentParser(description="Merge existing analysis and "
"state files for a single simulation directory")

parser.usage = """merge.py -h
merge.py -d DIRECTORY
merge.py -Ra RAYLEIGH [-m MU] [-Pr PRANDTL] [-N N] [--movie]

"""

mutually exclusive group: --directory, -Ra
group = parser.add_mutually_exclusive_group()
group.add_argument("-d", "--directory",

help="folder containing simulation files to merge")
group.add_argument("-Ra", "--Rayleigh", type=int, default=10000,

help="Rayleigh number (conduction vs convection)")
Other arguments used if --directory is not specified
parser.add_argument("-m", "--mu", type=int,

help="relaxation parameter for projection coupling")
parser.add_argument("-Pr", "--Prandtl", type=int,

help="Prandtl number (viscous vs thermal diffusion)")
parser.add_argument("-N", "--N", type=int,

help="number of Fourier/Chebyshev projection modes")
parser.add_argument("--movie", action="store_true", default=False,

help="indicate that this is a movie-making experiment")

args = parser.parse_args()

Get the name of the directory to merge --------------------------------------
if args.directory:

label = args.directory
else:

label = folder_name(Rayleigh=args.Rayleigh, mu=args.mu, N=args.N,
Prandtl=args.Prandtl, movie=args.movie)

if not os.path.isdir(label):
raise NotADirectoryError(label)

Run the actual merge.
b2d = BoussinesqDataAssimilation2D(label)
b2d.merge_results(force=True)

Process the merged data (only on the root process).
if RANK == 0:

if os.path.isfile(os.path.join(label, "analysis", "analysis.h5")):
b2d.plot_convergence()
b2d.plot_nusselt()

if os.path.isfile(os.path.join(label, "states", "states.h5")):
b2d.animate_temperature()
b2d.animate_clusters()

plot tools.py. Parses command line arguments and creates plots like Figures 3.4, 3.6,

and 4.2.

84

www.manaraa.com

plot_tools.py
"""Functions for extracting data to plot, etc."""

import os
import h5py
import argparse
import numpy as np
from itertools import cycle
from matplotlib import pyplot as plt

from base_simulator import BaseSimulator

plt.style.use(".mplstyle")

Helper Functions ==

def get_data(dirname, task):
"""Get the specified taks from <dirname>/analysis/analysis.h5

Returns:
((n,) ndarray): sim_time
((n,) ndarray): task

"""
if task == "sum_norm":

return get_sum_norm(dirname)
Make sure the directory and corresponding analysis file exist.
if not os.path.isdir(dirname):

raise NotADirectoryError(dirname)
target = os.path.join(dirname, "analysis", "analysis.h5")
if not os.path.isfile(target):

raise FileNotFoundError(target)
try:

with h5py.File(target, 'r') as datafile:
return np.array(datafile["scales/sim_time"]), datafile[task][:,0,0]

except KeyError:
print("\nMissing data in {}: {}".format(dirname, task), end='\n\n')
raise

def get_label(dirname, label):
"""Strip the label of interest out of a directory name. For example, if
dirname == "RA_123_N_08_456",

label=="RA" -> return 123
label=="N" -> return 8
label=="mu" -> return 456

For label=="RA", also put it in scientific notation.
"""
try:

out = BaseSimulator._load_params(dirname)[label]
except KeyError:

if label == "Pr":
out = "\infty"

else:
raise

out = "{:.2e}".format(out) if label == "Ra" else out
return r"${} = {}$".format(r"\mu" if label == "mu" else label, out)

def get_sum_norm(dirname):
"""Extract ||u_ - u||_H2 + ||T_ - T||H2."""
simtime1, T_h2_err = get_data(dirname, "tasks/T_h2_err")
simtime2, u_h2_err = get_data(dirname, "tasks/u_h2_err")
assert np.allclose(simtime1, simtime2)
assert T_h2_err.shape == u_h2_err.shape
return simtime1, T_h2_err + u_h2_err

Main Routine ==

85

www.manaraa.com

def make_plot(dirs, task, variable, outfile, xmax=.01, ymin=1e-11, title=None):
"""Plot the task from the given directories.

Parameters:
dirs (list(str)): directories to pull data from.
task (str): which item to search for in each analysis.h5 file.
variable (str): the kind of labels to use in the plot legend.
outfile (str): the name of the resulting figure file.
xmax (float): upper bound for the x-axis of the plot.
ymin (float): lower bound for the y-axis of the plot.
title (str): title for the plot.

"""
print("Plotting {} with label {} from".format(task, variable))
print('\t' + "\n\t".join(dirs))
fig,ax = plt.subplots(1, 1)
data, missing = [], []

Get the data from each directory and record errors.
for d in dirs:

try:
data.append(get_data(d, task))

except FileNotFoundError:
missing.append(d)
dirs.remove(d)

if not dirs:
raise FileNotFoundError(missing)

elif missing:
print("MISSING FILES:\n\t", "\n\t".join(missing))

Plot the data over [0, xmax].
for [t,y],d,style in zip(data, dirs, cycle(['-', '--', '-.', ':'])):

ax.semilogy(t, y, style, lw=1, label=get_label(d, variable))
ax.set_xlim(0, xmax)
ax.set_ylim(ymin, 1e1)
ax.set_xlabel(r"Simulation Time t")
ax.legend(loc="lower left", ncol=2, fontsize=8)
if title:

ax.set_title(r"${}$".format(title))
plt.tight_layout()
plt.savefig(outfile, dpi=300)
print("Figure saved as", outfile)

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("TASK",

help="which task to plot (e.g. tasks/T_err, sum_norm)")
parser.add_argument("LABEL",

help="the variable to use for a label (Ra, mu, or N)")
parser.add_argument("DIR", nargs='+',

help="directories to pull data from")
parser.add_argument("--outfile", default="TEST.png",

help="name of the file to save")
parser.add_argument("--xmax", type=float, default=.01,

help="upper bound of x-axis on plot")
parser.add_argument("--ymin", type=float, default=1e-11,

help="lower bound of y-axis on plot")
parser.add_argument("--title", default=None,

help="the figure title (if any)")
args = parser.parse_args()

make_plot(args.DIR, args.TASK, args.LABEL,
args.outfile, args.xmax, args.ymin, args.title)

86

www.manaraa.com

.mplstyle. Style for matplotlib plots; used in the visualization routines in boussinesq2d.py

and plot tools.py.

Styles for plots.

Text
text.color : DarkSlateGrey

Axes
axes.edgecolor : grey
axes.spines.top : False
axes.spines.right : False
axes.labelcolor : DarkSlateGrey
axes.labelpad : 8.0
axes.titlesize : x-large
axes.titlepad : 16.0

Ticks
xtick.color : DarkSlateGrey
ytick.color : DarkSlateGrey

Figures
figure.titlesize : x-large
figure.figsize : 5, 3

savefig.dpi : 300
savefig.format : pdf
savefig.bbox : tight

87

www.manaraa.com

Bibliography

[1] G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics
in turbulent Rayleigh-Bénard convection, Reviews of modern physics, 81 (2009), p. 503.

[2] M. Altaf, E. Titi, T. Gebrael, O. Knio, L. Zhao, M. McCabe, and
I. Hoteit, Downscaling the 2d Bénard convection equations using continuous data
assimilation, Computational Geosciences, 21 (2017), pp. 393–410.

[3] P. S. Bernard, Fluid Dynamics, Cambridge University Press, 2015.

[4] B. Blankenbach, F. Busse, U. Christensen, L. Cserepes, D. Gunkel,
U. Hansen, H. Harder, G. Jarvis, M. Koch, G. Marquart, et al., A bench-
mark comparison for mantle convection codes, Geophysical Journal International, 98
(1989), pp. 23–38.

[5] J. Boussinesq, Théorie de L’écoulement Tourbillonnant et Tumultueux des Liquides
Dans Les Lits Rectilignes à Grande Section, vol. 1, Gauthier-Villars, 1897.

[6] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. Brown, Dedalus:
Flexible framework for spectrally solving differential equations. Astrophysics Source
Code Library, Mar. 2016.

[7] R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow: Fundamentals and
Engineering Applications, Butterworth-Heinemann, 1999.

[8] S. Childress, An Introduction to Theoretical Fluid Mechanics, vol. 19, American
Mathematical Society, 2009.

[9] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics,
vol. 4, Springer-Verkag, 2013.

[10] P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathe-
matics, University of Chicago Press, Chicago, IL, 1988.

[11] T. Dhert, T. Ashuri, and J. R. Martins, Aerodynamic shape optimization of wind
turbine blades using a Reynolds-averaged Navier–Stokes model and an adjoint method,
Wind Energy, 20 (2017), pp. 909–926.

[12] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathemat-
ics, American Mathematical Society, 2010.

[13] A. Farhat, H. Johnston, M. S. Jolly, and E. S. Titi, Assimilation of nearly
turbulent Rayleigh-Bénard flow through vorticity or local circulation measurements: a
computational study, arXiv preprint arXiv:1709.02417, (2017).

[14] A. Farhat, M. Jolly, and E. Titi, Continuous data assimilation for the 2d Bénard
convection through velocity measurements alone, Phys. D, 303 (2015), pp. 59–66.

[15] W. Graebel, Advanced Fluid Mechanics, Academic Press, 2007.

88

www.manaraa.com

[16] J. Humpherys, T. J. Jarvis, and E. J. Evans, Foundations of Applied Mathematics
Volume 1: Mathematical Analysis, Society for Industrial and Applied Mathematics,
2017.

[17] M. Jolly, V. Martinez, S. Sadigov, and E. Titi, A determining form for the
subcritical surface quasi-geostrophic equation, J. Dyn. Differ. Equations, (2018), pp. 1–
38.

[18] L. Kondic, P. Palffy-Muhoray, and M. J. Shelley, Models of non-newtonian
Hele-Shaw flow, Physical Review E, 54 (1996), p. R4536.

[19] K. Law, A. Stuart, and K. Zygalakis, Data Assimilation: A Mathematical In-
troduction, vol. 62, Springer, 2015.

[20] R. J. LeVeque, D. L. George, and M. J. Berger, Tsunami modelling with
adaptively refined finite volume methods, Acta Numerica, 20 (2011), pp. 211–289.

[21] L. Rayleigh, On convection currents in a horizontal layer of fluid, when the higher
temperature is on the under side, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 32 (1916), pp. 529–546.

[22] C. Sotin and S. Labrosse, Three-dimensional thermal convection in an iso-viscous,
infinite Prandtl number fluid heated from within and from below: applications to the
transfer of heat through planetary mantles, Physics of the Earth and Planetary Interiors,
112 (1999), pp. 171–190.

[23] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68
of Applied Mathematical Sciences, Springer-Verlag, New York, 1997.

[24] D. Tritton, Physical Fluid Dynamics, Clarendon Press, 1988.

[25] D. Turcotte and G. Schubert, Geodynamics, Cambridge University Press, 2014.

[26] X. Wang, A note on long time behavior of solutions to the Boussinesq system at large
Prandtl number, Contemp. Math., 371 (2005), pp. 315–323.

89

	Brigham Young University
	BYU ScholarsArchive
	2018-07-01

	Data Assimilation in the Boussinesq Approximation for Mantle Convection
	Shane Alexander McQuarrie
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Convection
	1.2 The Boussinesq Approximation
	1.3 Data Assimilation
	1.4 Dedalus
	1.5 Outline

	2 Infinite Prandtl Assimilation
	2.1 Functional Setting
	2.2 Regularity
	2.3 A Priori Estimates
	2.4 Main Theorem

	3 Numerical Simulations
	3.1 Dimension Reduction
	3.2 Minimal Simulation Code
	3.3 Results

	4 Other Assimilation Schemes
	4.1 Finite Prandtl Assimilation
	4.2 Hybrid Prandtl Assimilation

	5 Conclusion
	5.1 Summary
	5.2 Extensions

	Appendix A. Notation
	A.1 Vector Products
	A.2 Derivatives
	A.3 Spaces and Norms

	Appendix B. Analytical Tools
	Appendix C. Simulation Code
	Bibliography

